Relating ordinals in set theory to ordinals in type theory

Tom de Jong1 Nicolai Kraus1
Fredrik Nordvall Forsberg2 Chuangjie Xu3

1University of Nottingham, UK
2University of Strathclyde, UK
3SonarSource GmbH, Germany

Workshop on
Homotopy Type Theory/Univalent Foundations (HoTT/UF)

22 April 2023
 Ordinals in set theory

- **Def.** A set \(x \) is **transitive** if for every \(y \in x \) and \(z \in y \), we have \(z \in x \).

- **Def.** A **set-theoretic ordinal** is a transitive set whose elements are all transitive.

- **Lemma** The elements of a set-theoretic ordinal are again set-theoretic ordinals. Thus, a set is a set-theoretic ordinal if and only if it is **hereditarily transitive**.

- **Ex.** The sets \(\emptyset, \{\emptyset\} \) and \(\{\emptyset, \{\emptyset\}\} \) are all set-theoretic ordinals, but \(\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\} \) isn’t, as \(\{\{\emptyset\}\} \) is a non-transitive member.
Ordinals in homotopy type theory

- In HoTT, a \textit{(type-theoretic) ordinal} is defined as a type X with a prop-valued binary relation $<$ that is \textit{transitive}, \textit{extensional} and \textit{wellfounded}.

- Extensionality means that we have

 $$x = y \iff \forall (u : X).(u < x \iff u < y)$$

 It follows that X is an hset.

- Wellfoundedness is defined in terms of \textit{accessibility}, but is equivalent to the assertion that for every $P : X \to \mathcal{U}$, we have

 $$\prod(x : X).P(x) \text{ as soon as } \prod(x : X).((\prod(y : X).(y < x \to P(y))) \to P(x)).$$
Types of ordinals in HoTT

- We write Ord for the type of (small) type-theoretic ordinals.

- HoTT hosts a model (V, \in) of a constructive set theory. The type V is a HIT with point-constructor

 $$V\text{-set}(A, f) : V \quad \text{for} \quad A : U \text{ and } f : A \to V$$

 quotiented by bisimilarity: $V\text{-set}(A, f)$ and $V\text{-set}(B, g)$ are identified exactly when f and g have the same image.

- We define set-membership $\in : V \to V \to \text{Prop}$ by

 $$x \in V\text{-set}(A, f) \equiv \exists (a : A). f(a) = x$$

- Thus, we can define the subtype V_{ord} of V of set-theoretic ordinals in HoTT.
Set-theoretic and type-theoretic ordinals are equivalent

Thm. The types \mathbb{V}_{ord} and Ord are equivalent.

Proof sketch Define $\Phi : \text{Ord} \to \mathbb{V}_{\text{ord}}$ by transfinite recursion:

$$\Phi(\alpha) \equiv \mathbb{V}\text{-set}(\alpha, \lambda(a : \alpha).\Phi(\alpha \downarrow a)),$$

where

$$\alpha \downarrow a \equiv \Sigma(b : \alpha).b < a.$$

Its inverse $\Psi : \mathbb{V}_{\text{ord}} \to \text{Ord}$ is the rank function:

$$\Psi(\mathbb{V}\text{-set}(A, f)) \equiv \bigvee_{a : A} (\Psi(f(a)) + 1).$$
Set-theoretic and type-theoretic ordinals are equivalent

Thm. The types \mathbb{V}_{ord} and Ord are equivalent.

Proof sketch Define $\Phi : \text{Ord} \rightarrow \mathbb{V}_{\text{ord}}$ by transfinite recursion:

$$\Phi(\alpha) \equiv \mathbb{V}\text{-set}(\alpha, \lambda(a: \alpha). \Phi(\alpha \downarrow a)),$$

where

$$\alpha \downarrow a \equiv \Sigma(b: \alpha). b < a.$$

Its inverse $\Psi : \mathbb{V}_{\text{ord}} \rightarrow \text{Ord}$ is the rank function:

$$\Psi(\mathbb{V}\text{-set}(A, f)) \equiv \bigvee_{a:A}(\Psi(f(a)) + 1).$$

It is possible to give nonrecursive descriptions of the rank:

$$\Psi(x) \simeq \Sigma(y : \mathbb{V}_{\text{ord}}). y \in x \quad \text{and} \quad \Psi(\mathbb{V}\text{-set}(A, f)) = A/\sim,$$

where $a \sim b \iff f(a) = f(b)$. (But be careful about size.)
The big picture

▶ **Thm.** The types \mathbb{V}_{ord} and Ord are equivalent.

But more is true...

▶ The type Ord is actually a large type-theoretic ordinal itself:

$$\alpha < \beta \iff \alpha \text{ is an initial segment of } \beta \iff \sum(y : \beta). (\alpha = \beta \downarrow y)$$

▶ Membership \in makes \mathbb{V}_{ord} into a large type-theoretic ordinal.

▶ **Thm.** The type-theoretic ordinals $(\mathbb{V}_{\text{ord}}, \in)$ and $(\text{Ord}, <)$ are isomorphic.

Thus, in HoTT, set-theoretic and type-theoretic ordinals coincide.
The bigger picture

▶ Can we realize the *full* cumulative hierarchy \bigvee as a type of ordered structures? That is, can we find a type making the square commute?

\[
\begin{array}{c}
\bigvee_{\text{ord}} \xrightarrow{\sim} \text{Ord} \\
\downarrow \quad \downarrow \\
\bigvee \xrightarrow{\sim} ?
\end{array}
\]

▶ An initial naive attempt may be to simply *drop transitivity*, i.e., to take

\[? = \text{type of extensional wellfounded orders.}\]
Generalizing from ordinals to sets

- We consider extensional wellfounded orders \((X, <)\) with a marking: a predicate on \(X\) that picks out the top-level elements of a set.

- E.g., the sets \(\{\emptyset, \{\emptyset\}\}\) and \(\{\{\emptyset\}\}\) are both represented by the two-element type ordered as \(0 < 1\); we mark both 0 and 1 for the first set, but only 1 in the representation of the second set.

- A marking is covering if any element can be reached from a marked top-level element, i.e., if the order contains no “junk”.

- The idea of encoding sets as wellfounded structures isn’t new. The above approach worked well for our purposes of generalizing the theory of ordinals.
Filling the bigger picture

- We write MEWO_{cov} for the type of covered marked extensional wellfounded orders.

- Every ordinal can be equipped with the trivial covering by marking everything. Thus, the type Ord of ordinals is a subtype of MEWO_{cov}.

- We get the bottom isomorphism by generalizing the constructions used to establish $\mathbb{V}_{\text{ord}} \simeq \text{Ord}$:

\[
\begin{array}{ccc}
\mathbb{V}_{\text{ord}} & \xrightarrow{\simeq} & \text{Ord} \\
\downarrow & & \downarrow \\
\mathbb{V} & \xrightarrow{\simeq} & \text{MEWO}_{\text{cov}}
\end{array}
\]
Conclusion

▶ In HoTT, the set-theoretic ordinals in \(\mathbb{V} \) coincide with the type-theoretic ordinals.

▶ By generalizing from type-theoretic ordinals to covered mewos, we capture all sets in \(\mathbb{V} \).

▶ Question: Do the type-theoretic ordinals in the cubical sets model of HoTT coincide with the set-theoretic ordinals?

▶ Question: Can we use covered mewos to pin down the exact constructive set theory that \(\mathbb{V} \) models? E.g., can we show strong collection is independent?