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Rezk completion

1 A Rezk completion RC(C) of a category C is the free
univalent category associated to it.

2 Any functor F : C → E with E univalent, factors uniquely via
H:

C

RC(C) E

FH
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Kobe Wullaert Rezk completion of bicategories



Rezk completion of categories
Rezk completion of bicategories

Open question

Rezk completion

1 A Rezk completion RC(C) of a category C is the free
univalent category associated to it.

2 Any functor F : C → E with E univalent, factors uniquely via
H:

C

RC(C) E

FH

∃!

Kobe Wullaert Rezk completion of bicategories



Rezk completion of categories
Rezk completion of bicategories

Open question

Rezk completion: Definition

Definition

A Rezk completion of a category C consists of:

1 a univalent category RC(C) ;
2 a functor H : C → RC(C)

such that for any univalent category E ,

H · (−) : [RC(C), E ] → [C, E ],

is an isomorphism of categories.

Remark

1 Equivalently: H · (−) is adjoint equivalence of categories.

2 Equivalently: H · (−) is weak equivalence of categories.
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Towards computing Rezk completions

Rezk completion of bicategories

Bicategories in Univalent Foundations

For every locally univalent bicategory B, there is a univalent
bicategory RCglobal(B) and a weak equivalence B → RCglobal(B).

What about non-locally univalent bicategories:

Theorem

For every bicategory B, there is a locally univalent bicategory
RClocal(B) and a weak equivalence B → RClocal(B).
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Rezk completion of bicategories: Construction

Theorem

For every bicategory B, there is a locally univalent bicategory
RClocal(B) and a weak equivalence B → RClocal(B).

Define

1 ob (RClocal(B)) := ob (B) ;
2 RClocal(B) (x , y) := RC (B(x , y));
3 What about composition?
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Rezk completion of bicategories: Composition

B(x , y)× B(y , z) RClocal(B(x , y))× RClocal(B(y , z))

B(x , z) RClocal(B(x , z))

η×η

·B ∃!

η
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Rezk completion of bicategories: Left unitor

B(x , y) RClocal(B(x , y))

B(x , x)× B(x , y) RClocal(B(x , x))× RClocal(B(x , y))

B(x , y) RClocal(B(x , y))

η

(Id,−)

Id

(Id,−)

η×η

·B ·RClocal(B)

η
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Rezk completion of bicategories: universal property

Let B be a bicategory and ηB : B → RC2(B) be the Rezk
completion of B.

Conjecture

For any univalent bicategory D, the pseudo-functor

ηB · − : [RC2(B),D] → [B,D]

is a bi-equivalence of bicategories. Furthermore, this characterizes
the (RC2(B), ηB) uniquely.
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Rezk completion of Cat(?)

Question

What is the Rezk completion RC2(Cat) of Cat?
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Rezk completion of Cat: possible approach 1

Observation

Consider the following (commuting) diagram:

Cat RC2(Cat)

Catuniv

ηCat

RC1 ∃!

Thus RC2(Cat) can be constructed as a displayed bicategory over
Catuniv, i.e. as a bicategory of structured (univalent) categories.

Question

Can we construct this displayed bicategory concretely?
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Towards computing Rezk completions

Rezk completion of Cat: possible approach 2

Another approach is:

Question

1 What is the local Rezk completion RClocal(Cat) of Cat?

2 What is the Rezk completion RC1([C,D]) of a functor
category [C,D]?
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Understanding the Rezk completion

Proposition

For every C and D, TFAE;

1 RC([C,D]) = [C,RC(D)] ;

2 C and D are equivalent to a univalent category.

Lemma

Let B be a full sub-bicategory of Cat. TFAE:

1
∏

C,D:B RC1([C,D]) = [C,RC1(D)] ;

2 RC2(B) = Buniv (where Buniv is the intersection of B and
Catuniv) ;

3 B ≃ Buniv.
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Rezk completion of Cat

Corollary

RC(Cat) ̸= Catuniv.

Intuition 1

1 Catuniv ∼ categories up to weak equivalence (unique
representing object) ;

2 RC(Cat) ∼ categories up to isomorphism of isomorphic
functors.

Intuition 2

1 RC : Cat → Catuniv is objectwise free;

2 ηC : Cat → RC(Cat) is (externally) free
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Is the Rezk completion of categories what we want?

Intuitively

1 good categories ∼ univalent categories.

2 Cat 7→ Catuniv

GoodReplacement(Cat) ∼ Catuniv

Question

Is there a completion GC on bicategories such that

1 GC(Cat) = Catuniv;

2 GC(MonCat) = MonCatuniv ;

3 GC(DagCat) = DagCat†−univ?
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What does such a completion mean?

Question

Is it possible (universally) characterize RC : Cat → Catuniv?

This question is closely related to:

Question

Is it possible to characterize the correct notion of univalence of
(structured) categories?
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The end

Thank you! Any questions?
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