Rezk completion of bicategories

Kobe Wullaert
Delft University of Technology

(1) Rezk completion of categories
(2) Rezk completion of bicategories

- Towards computing Rezk completions
(3) Open question

Rezk completion

(1) A Rezk completion $\operatorname{RC}(\mathcal{C})$ of a category \mathcal{C} is the free univalent category associated to it.

Rezk completion

(1) A Rezk completion $\operatorname{RC}(\mathcal{C})$ of a category \mathcal{C} is the free univalent category associated to it.
(2) Any functor $F: \mathcal{C} \rightarrow \mathcal{E}$ with \mathcal{E} univalent, factors uniquely via \mathcal{H} :

Rezk completion: Definition

Definition

A Rezk completion of a category \mathcal{C} consists of:
(1) a univalent category $\operatorname{RC}(\mathcal{C})$;
(2) a functor $\mathcal{H}: \mathcal{C} \rightarrow \mathrm{RC}(\mathcal{C})$

Rezk completion: Definition

Definition

A Rezk completion of a category \mathcal{C} consists of:
(1) a univalent category $\operatorname{RC}(\mathcal{C})$;
(2) a functor $\mathcal{H}: \mathcal{C} \rightarrow \mathrm{RC}(\mathcal{C})$
such that for any univalent category \mathcal{E},

$$
\mathcal{H} \cdot(-):[R C(\mathcal{C}), \mathcal{E}] \rightarrow[\mathcal{C}, \mathcal{E}]
$$

is an isomorphism of categories.

Rezk completion: Definition

Definition

A Rezk completion of a category \mathcal{C} consists of:
(1) a univalent category $\operatorname{RC}(\mathcal{C})$;
(2) a functor $\mathcal{H}: \mathcal{C} \rightarrow \mathrm{RC}(\mathcal{C})$
such that for any univalent category \mathcal{E},

$$
\mathcal{H} \cdot(-):[R C(\mathcal{C}), \mathcal{E}] \rightarrow[\mathcal{C}, \mathcal{E}],
$$

is an isomorphism of categories.

Remark

(1) Equivalently: $\mathcal{H} \cdot(-)$ is adjoint equivalence of categories.
(2) Equivalently: $\mathcal{H} \cdot(-)$ is weak equivalence of categories.

Rezk completion of bicategories

Bicategories in Univalent Foundations

For every locally univalent bicategory \mathcal{B}, there is a univalent bicategory $\mathrm{RC}_{\text {global }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {global }}(\mathcal{B})$.

Rezk completion of bicategories

Bicategories in Univalent Foundations

For every locally univalent bicategory \mathcal{B}, there is a univalent bicategory $\mathrm{RC}_{\text {global }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {global }}(\mathcal{B})$.

What about non-locally univalent bicategories:

Rezk completion of bicategories

Bicategories in Univalent Foundations

For every locally univalent bicategory \mathcal{B}, there is a univalent bicategory $\mathrm{RC}_{\text {global }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {global }}(\mathcal{B})$.

What about non-locally univalent bicategories:

Theorem

For every bicategory \mathcal{B}, there is a locally univalent bicategory $R C_{\text {local }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {local }}(\mathcal{B})$.

Rezk completion of bicategories: Construction

Theorem

For every bicategory \mathcal{B}, there is a locally univalent bicategory $R C_{\text {local }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {local }}(\mathcal{B})$.

Rezk completion of bicategories: Construction

Theorem

For every bicategory \mathcal{B}, there is a locally univalent bicategory $R C_{\text {local }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {local }}(\mathcal{B})$.

Define
(1) $\mathrm{ob}\left(\mathrm{RC}_{\text {local }}(\mathcal{B})\right):=\mathrm{ob}(\mathcal{B})$;
(2) $\mathrm{RC}_{\text {local }}(\mathcal{B})(x, y):=\mathrm{RC}(\mathcal{B}(x, y))$

Rezk completion of bicategories: Construction

Theorem

For every bicategory \mathcal{B}, there is a locally univalent bicategory $R C_{\text {local }}(\mathcal{B})$ and a weak equivalence $\mathcal{B} \rightarrow \mathrm{RC}_{\text {local }}(\mathcal{B})$.

Define
(1) $\mathrm{ob}\left(\mathrm{RC}_{\text {local }}(\mathcal{B})\right):=\mathrm{ob}(\mathcal{B})$;
(2) $\mathrm{RC}_{\text {local }}(\mathcal{B})(x, y):=\mathrm{RC}(\mathcal{B}(x, y))$;
(3) What about composition?

Rezk completion of bicategories: Composition

$$
\begin{aligned}
& \mathcal{B}(x, y) \times \mathcal{B}(y, z) \xrightarrow{\eta \times \eta} \mathrm{RC}_{\text {local }}(\mathcal{B}(x, y)) \times \mathrm{RC}_{\text {local }}(\mathcal{B}(y, z))
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}(x, z) \longrightarrow \mathrm{RC}_{\text {local }}(\mathcal{B}(x, z))
\end{aligned}
$$

Rezk completion of bicategories: Left unitor

Rezk completion of bicategories: universal property

Let \mathcal{B} be a bicategory and $\eta_{\mathcal{B}}: \mathcal{B} \rightarrow \mathrm{RC}_{2}(\mathcal{B})$ be the Rezk completion of \mathcal{B}.

Conjecture

For any univalent bicategory \mathcal{D}, the pseudo-functor

$$
\eta_{\mathcal{B}} \cdot-:\left[\mathrm{RC}_{2}(\mathcal{B}), \mathcal{D}\right] \rightarrow[\mathcal{B}, \mathcal{D}]
$$

is a bi-equivalence of bicategories. Furthermore, this characterizes the $\left(\mathrm{RC}_{2}(\mathcal{B}), \eta_{\mathcal{B}}\right)$ uniquely.
(1) Rezk completion of categories
(2) Rezk completion of bicategories

- Towards computing Rezk completions
(3) Open question

Rezk completion of Cat(?)

Question

What is the Rezk completion RC_{2} (Cat) of Cat?

Rezk completion of Cat: possible approach 1

Observation

Consider the following (commuting) diagram:

Rezk completion of Cat: possible approach 1

Observation

Consider the following (commuting) diagram:

Thus RC_{2} (Cat) can be constructed as a displayed bicategory over Cat univ, i.e. as a bicategory of structured (univalent) categories.

Rezk completion of Cat: possible approach 1

Observation

Consider the following (commuting) diagram:

Thus RC_{2} (Cat) can be constructed as a displayed bicategory over Cat univ, i.e. as a bicategory of structured (univalent) categories.

Question

Can we construct this displayed bicategory concretely?

Rezk completion of Cat: possible approach 2

Another approach is:

Question

(1) What is the local Rezk completion $\mathrm{RC}_{\text {local }}$ (Cat) of Cat?
(2) What is the Rezk completion $\mathrm{RC}_{1}([\mathcal{C}, \mathcal{D}])$ of a functor category $[\mathcal{C}, \mathcal{D}]$?

Understanding the Rezk completion

Proposition

For every \mathcal{C} and \mathcal{D}, TFAE;
(1) $\mathrm{RC}([\mathcal{C}, \mathcal{D}])=[\mathcal{C}, \mathrm{RC}(\mathcal{D})]$;
(2) \mathcal{C} and \mathcal{D} are equivalent to a univalent category.

Understanding the Rezk completion

Proposition

For every \mathcal{C} and \mathcal{D}, TFAE;
(1) $\mathrm{RC}([\mathcal{C}, \mathcal{D}])=[\mathcal{C}, \mathrm{RC}(\mathcal{D})]$;
(2) \mathcal{C} and \mathcal{D} are equivalent to a univalent category.

Lemma

Let \mathcal{B} be a full sub-bicategory of Cat. TFAE:
(1) $\prod_{\mathcal{C}, \mathcal{D}: \mathcal{B}} \mathrm{RC}_{1}([\mathcal{C}, \mathcal{D}])=\left[\mathcal{C}, \mathrm{RC}_{1}(\mathcal{D})\right]$;
(2) $\mathrm{RC}_{2}(\mathcal{B})=\mathcal{B}_{\text {univ }}$ (where $\mathcal{B}_{\text {univ }}$ is the intersection of \mathcal{B} and Cat ${ }_{\text {univ }}$) ;
(3) $\mathcal{B} \simeq \mathcal{B}_{\text {univ }}$.

Rezk completion of Cat

Corollary

$\mathrm{RC}($ Cat $) \neq$ Cat $_{\text {univ }}$.

Rezk completion of Cat

Corollary

$\mathrm{RC}($ Cat $) \neq$ Cat $_{\text {univ }}$.

Intuition 1

(1) Cat ${ }_{\text {univ }} \sim$ categories up to weak equivalence (unique representing object) ;
(2) $\mathrm{RC}($ Cat $) \sim$ categories up to isomorphism of isomorphic functors.

Rezk completion of Cat

Corollary

$\mathrm{RC}($ Cat $) \neq$ Cat $_{\text {univ }}$.

Intuition 1

(1) Cat ${ }_{\text {univ }} \sim$ categories up to weak equivalence (unique representing object) ;
(2) $\mathrm{RC}($ Cat $) \sim$ categories up to isomorphism of isomorphic functors.

Intuition 2

(1) RC: Cat $\rightarrow \mathbf{C a t}_{\text {univ }}$ is objectwise free;
(2) $\eta_{\mathcal{C}}:$ Cat $\rightarrow \mathrm{RC}(\mathbf{C a t})$ is (externally) free

(1) Rezk completion of categories

(2) Rezk completion of bicategories

- Towards computing Rezk completions
(3) Open question

Is the Rezk completion of categories what we want?

Intuitively

(1) good categories \sim univalent categories.

Is the Rezk completion of categories what we want?

Intuitively

(1) good categories \sim univalent categories.
(2) Cat \mapsto Cat $_{\text {univ }}$

Is the Rezk completion of categories what we want?

Intuitively

(1) good categories \sim univalent categories.
(2) Cat \mapsto Cat $_{\text {univ }}$

$$
\text { GoodReplacement }(\text { Cat }) \sim \text { Cat }_{\text {univ }}
$$

Is the Rezk completion of categories what we want?

Intuitively

(1) good categories \sim univalent categories.
(2) Cat \mapsto Cat $_{\text {univ }}$

$$
\text { GoodReplacement } \left.^{(\text {Cat })}\right) \sim \text { Cat }_{\text {univ }}
$$

Question

Is there a completion GC on bicategories such that
(1) $\mathrm{GC}($ Cat $)=$ Cat $_{\text {univ }}$

Is the Rezk completion of categories what we want?

Intuitively

(1) good categories \sim univalent categories.
(2) Cat \mapsto Cat $_{\text {univ }}$

GoodReplacement(Cat) \sim Cat $_{\text {univ }}$

Question

Is there a completion GC on bicategories such that
(1) $\mathrm{GC}($ Cat $)=$ Cat $_{\text {univ }}$;
(2) $\mathrm{GC}($ MonCat $)=$ MonCat $_{\text {univ }}$;
(3) GC(DagCat $)=$ DagCat $_{\dagger-\text { univ }}$?

What does such a completion mean?

Question

Is it possible (universally) characterize $\mathrm{RC}: \mathbf{C a t} \rightarrow \mathbf{C a t}_{\text {univ }}$?

What does such a completion mean?

Question

Is it possible (universally) characterize $\mathrm{RC}: \mathbf{C a t} \rightarrow \mathbf{C a t}_{\text {univ }}$?
This question is closely related to:
Question
Is it possible to characterize the correct notion of univalence of (structured) categories?

Thank you! Any questions?

