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Concepts involved

• Closed orientable genus 𝑔 surface

• Degree

• Covering spaces

• Homology

How to translate classical statements into Homotopy Type Theory …

… such that they are easy to formalize?
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*already shown in [Buchholtz, Van Doorn, Rijke (2018)]
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Hatcher

Hou (Favonia) and Harper (2016)

• No need to track local, point-set topological properties

• Work directly with the fibers 𝑝−1 𝑥 as family of sets

Covering Spaces in HoTT
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Hatcher

Definitions needed in HoTT

• pointed covering space

• total space and the covering map

• lift of a pointed map to the covering space

Lifting Criterion in HoTT
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Suppose given a covering space 𝐹 ∶ 𝑋 → hSet with point 𝑢 ∶ 𝐹(𝑥0) over a pointed type 𝑋, 𝑥0
and a pointed map 𝑓 ∶ 𝑌, 𝑦0 → 𝑋, 𝑥0 with 𝑌 connected. Then a pointed lift ሚ𝑓: ς𝑦:𝑌𝐹(𝑓(𝑦))
of 𝑓 exists iff

𝑓∗ 𝜋1 𝑌,𝑦0 ⊂ (pr1)∗ 𝜋1 Σ𝑋𝐹, 𝑥0; 𝑢0

Lemma
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Suppose given a covering space 𝐹 ∶ 𝑋 → hSet with point 𝑢 ∶ 𝐹(𝑥0) over a pointed type 𝑋, 𝑥0
and a pointed map 𝑓 ∶ 𝑌, 𝑦0 → 𝑋, 𝑥0 with 𝑌 connected. Then a pointed lift ሚ𝑓: ς𝑦:𝑌𝐹(𝑓(𝑦))
of 𝑓 exists iff for all loops 𝑝 ∶ 𝑦0 =𝑌 𝑦0 there exists a loop from 𝑢0 to 𝑢0 in 𝐹 lying over 𝑓∗ 𝑝 ,
i.e.

transport𝐹 𝑓∗ 𝑝 , 𝑢0 =𝐹(𝑥0) 𝑢0

Lemma (version 2)

Proof closely reflects the classical proof
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Classical setting

Path from 𝑎 to 𝑏 induces a change-of-basepoint isomorphism

\𝜋𝑛 𝑋, 𝑎 ≅ 𝜋𝑛(𝑋, 𝑏)

• depends on the homotopy class of the path

• a priori, not canonical

HoTT

Path 𝑝 ∶ 𝑎 =𝑋 𝑏 also induces a change-of-basepoint isomorphism

𝜋𝑛 𝑋, 𝑎 ≅ 𝜋𝑛(𝑋, 𝑏)

via transport

• Issue 𝑋 connected, then only 𝑎 =𝑋 𝑏 , so only

𝜋𝑛 𝑋, 𝑎 ≅ 𝜋𝑛(𝑋, 𝑏)

• Wanted an explicit isomorphism 𝜋𝑛 𝑋, 𝑎 ≅ 𝜋𝑛(𝑋, 𝑏), considered canonical
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it suffices to show that
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Let 𝑋 be a type with designated point 𝑎 ∶ 𝑋.

1. If 𝑋 is simply-connected, then the action of 𝜋1(𝑋, 𝑎) on 𝜋𝑛(𝑋, 𝑎) is trivial for all 𝑛 ≥ 1

2. The fundamental group 𝜋1(𝑋, 𝑎) is abelian if and only if the action on itself is trivial

3. If merely for all loops 𝑝, 𝑞 ∶ Ω 𝑋, 𝑎 , 𝑝 ∙ 𝑞 = 𝑞 ∙ 𝑝 then the action of 𝜋1 𝑋, 𝑎 on 𝜋𝑛(𝑋, 𝑎) is
trivial for all 𝑛 ≥ 1

Via extension by weak constancy [Hou (Favonia) and Harper (2016)] 
it suffices to show that

For all paths 𝑝, 𝑞 ∶ 𝑎 =𝑋 𝑏

transport𝜋𝑛 𝑋,− 𝑝,− = transport𝜋𝑛 𝑋,− (𝑞, −)

equivalent to

𝜋1 𝑋, 𝑎 acts trivially on 𝜋𝑛 𝑋, 𝑎

Forces us to keep using
set-truncation

Theorem
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Conclusion

• Formalized classification of covering spaces

• Formalized conditions for when change-of-basepoint isomorphism is canonical

• Learned how to use HoTT as a synthetic framework

• Less layers of abstraction than in classical setting

• Ignore local, point-set topological properties

Lessons learned for formalization

• Work with fibrations instead of the total space

• Remove truncations … not always possible
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