
N from Z

Christian Sattler & David Wärn



Terminology

N is any type freely generated by:

▶ an element 0 : N,
▶ a self-map S : N → N.

Z is any type freely generated by:

▶ an element 0 : Z,
▶ a self-equivalence S : Z → Z.



Terminology

N is any type freely generated by:

▶ an element 0 : N,
▶ a self-map S : N → N.

Z is any type freely generated by:

▶ an element 0 : Z,
▶ a self-equivalence S : Z → Z.



Z-induction

Given

▶ P : Z → U,

▶ 0P : P(0),

▶ SP : (x : Z) → P(x) ≃ P(S(x)),

obtain

▶ p : (x : Z) → P(x),

▶ p(0) = 0P ,

▶ p(S(x)) = SP(p(x)).



Our result

Our setting is type theory with:

▶ 1, Σ, =

▶ Π with funext

▶ 2 with large elimination (or descent)

Theorem (Sattler and W.)

Given Z, can construct N.
We have two proofs. We present one of them in this talk.



Our result

Our setting is type theory with:

▶ 1, Σ, =

▶ Π with funext

▶ 2 with large elimination (or descent)

Theorem (Sattler and W.)

Given Z, can construct N.
We have two proofs. We present one of them in this talk.



Motivation

Where does Z come from?

Theorem
If S1 has large elimination, then ΩS1 is freely generated by:

▶ refl : ΩS1

▶ − · loop : ΩS1 ≃ ΩS1

Thus ΩS1 = Z.



Motivation

Where does Z come from?

Theorem
If S1 has large elimination, then ΩS1 is freely generated by:

▶ refl : ΩS1

▶ − · loop : ΩS1 ≃ ΩS1

Thus ΩS1 = Z.



Motivation

Where does Z come from?

Theorem
If S1 has large elimination, then ΩS1 is freely generated by:

▶ refl : ΩS1

▶ − · loop : ΩS1 ≃ ΩS1

Thus ΩS1 = Z.



Previous work

Rijke–Shulman 17: construct N from Z given impredicative Prop
and a universe

Rose 20: constructs N from Z given a univalent universe

Rasekh 21: constructs N from Z given impredicative Prop



Previous work

Rijke–Shulman 17: construct N from Z given impredicative Prop
and a universe

Rose 20: constructs N from Z given a univalent universe

Rasekh 21: constructs N from Z given impredicative Prop



Previous work

Rijke–Shulman 17: construct N from Z given impredicative Prop
and a universe

Rose 20: constructs N from Z given a univalent universe

Rasekh 21: constructs N from Z given impredicative Prop



Previous work

Rijke–Shulman 17: construct N from Z given impredicative Prop
and a universe

Rose 20: constructs N from Z given a univalent universe

Rasekh 21: constructs N from Z given impredicative Prop



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,

▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,

▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.



Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Aim: define N as Σ-type over M ≡def Z0 + Z+.

Both

▶ definition of N
▶ derivation of N-induction

use the idea of partially defined inductive functions.



Idea

Aim: define N as Σ-type over M ≡def Z0 + Z+.

Both

▶ definition of N
▶ derivation of N-induction

use the idea of partially defined inductive functions.



Ordering

Can define subtraction (−) : Z → Z → Z by integer induction.

Take x ≤ y to mean x − y ∈ Z− + Z0.

Have:

▶ if x ≤ y then x ≤ S(y)

▶ if S(x) ≤ y then x ≤ y

▶ S(x) ≤ S(y) iff x ≤ y

▶ x ≤ 0 iff x ∈ Z0

▶ x ≤ x



Ordering

Can define subtraction (−) : Z → Z → Z by integer induction.

Take x ≤ y to mean x − y ∈ Z− + Z0.

Have:

▶ if x ≤ y then x ≤ S(y)

▶ if S(x) ≤ y then x ≤ y

▶ S(x) ≤ S(y) iff x ≤ y

▶ x ≤ 0 iff x ∈ Z0

▶ x ≤ x



Ordering

Can define subtraction (−) : Z → Z → Z by integer induction.

Take x ≤ y to mean x − y ∈ Z− + Z0.

Have:

▶ if x ≤ y then x ≤ S(y)

▶ if S(x) ≤ y then x ≤ y

▶ S(x) ≤ S(y) iff x ≤ y

▶ x ≤ 0 iff x ∈ Z0

▶ x ≤ x



Inductive functions

Let A : M → U with:

▶ 0A : (x : Z0) → A(x)

▶ SA : (x : M) → A(x) → A(S(x))

Define B : M → U as

B(u) ≡def (x : M) → x ≤ u → A(x).

Have canonical maps:

▶ resu : B(S(u)) → B(u)

▶ extu : B(u) → B(S(u))

Say f : B(u) is inductive if resu(extu(f )) = f .
Write I (u) for type of inductive functions.



Inductive functions

Let A : M → U with:

▶ 0A : (x : Z0) → A(x)

▶ SA : (x : M) → A(x) → A(S(x))

Define B : M → U as

B(u) ≡def (x : M) → x ≤ u → A(x).

Have canonical maps:

▶ resu : B(S(u)) → B(u)

▶ extu : B(u) → B(S(u))

Say f : B(u) is inductive if resu(extu(f )) = f .
Write I (u) for type of inductive functions.



Inductive functions

Let A : M → U with:

▶ 0A : (x : Z0) → A(x)

▶ SA : (x : M) → A(x) → A(S(x))

Define B : M → U as

B(u) ≡def (x : M) → x ≤ u → A(x).

Have canonical maps:

▶ resu : B(S(u)) → B(u)

▶ extu : B(u) → B(S(u))

Say f : B(u) is inductive if resu(extu(f )) = f .
Write I (u) for type of inductive functions.



Inductive functions

Let A : M → U with:

▶ 0A : (x : Z0) → A(x)

▶ SA : (x : M) → A(x) → A(S(x))

Define B : M → U as

B(u) ≡def (x : M) → x ≤ u → A(x).

Have canonical maps:

▶ resu : B(S(u)) → B(u)

▶ extu : B(u) → B(S(u))

Say f : B(u) is inductive if resu(extu(f )) = f .
Write I (u) for type of inductive functions.



Rolling rule

For t : X → X , let fix(f ) ≡def (x : X )× (f (x) = x).

Lemma
fix(f ◦ g) ≃ fix(g ◦ f ) for f : X → Y , g : Y → X .

Proof.
Both types are equivalent to
(x : X )× (y : Y )× (f (x) = y)× (g(y) = x).



Rolling rule

For t : X → X , let fix(f ) ≡def (x : X )× (f (x) = x).

Lemma
fix(f ◦ g) ≃ fix(g ◦ f ) for f : X → Y , g : Y → X .

Proof.
Both types are equivalent to
(x : X )× (y : Y )× (f (x) = y)× (g(y) = x).



Rolling rule

For t : X → X , let fix(f ) ≡def (x : X )× (f (x) = x).

Lemma
fix(f ◦ g) ≃ fix(g ◦ f ) for f : X → Y , g : Y → X .

Proof.
Both types are equivalent to
(x : X )× (y : Y )× (f (x) = y)× (g(y) = x).



Inductive functions (cont.)

I (0) ≃ fix(res0 ◦ ext0)
≃ fix(− 7→ 0A)

≃ 1

I (S(u)) ≃ fix(resS(u) ◦ extS(u))
≃ fix(extu ◦ resu)
≃ fix(resu ◦ extu)
≃ I (u)



Inductive functions (cont.)

I (0) ≃ fix(res0 ◦ ext0)
≃ fix(− 7→ 0A)

≃ 1

I (S(u)) ≃ fix(resS(u) ◦ extS(u))
≃ fix(extu ◦ resu)
≃ fix(resu ◦ extu)
≃ I (u)



Defining N

Instantiate A as follows:

A(−) ≡def M

0A(−) ≡def 0

SA(x) ≡def S(x)

Then define naturals:

N(m) ≡def (f : I (m))× (f (m) = m)

N ≡def (m : M)× N(m)

Have:

▶ unique element (0, 0N) of (m : Z0)× N(m)

▶ SN : (m : M) → N(m) ≃ N(S(m))



Defining N

Instantiate A as follows:

A(−) ≡def M

0A(−) ≡def 0

SA(x) ≡def S(x)

Then define naturals:

N(m) ≡def (f : I (m))× (f (m) = m)

N ≡def (m : M)× N(m)

Have:

▶ unique element (0, 0N) of (m : Z0)× N(m)

▶ SN : (m : M) → N(m) ≃ N(S(m))



Defining N

Instantiate A as follows:

A(−) ≡def M

0A(−) ≡def 0

SA(x) ≡def S(x)

Then define naturals:

N(m) ≡def (f : I (m))× (f (m) = m)

N ≡def (m : M)× N(m)

Have:

▶ unique element (0, 0N) of (m : Z0)× N(m)

▶ SN : (m : M) → N(m) ≃ N(S(m))



Deriving N-induction

Given:

▶ P : (m : M) → N(m) → U

▶ 0P : P(0, 0N)

▶ SP : (m : M) (n : N(m)) → P(m, n) → P(S(m), SN(n))

Instantiate A as follows:

A(−) ≡def (n : N(m)) → P(m, n)

0A ≡def . . .

SA ≡def . . .

Prove (m : M) → I (m) by Z-induction.

Deduce (m : M) (n : N(m)) → P(m, n) compatible with 0P and SP .



Deriving N-induction

Given:

▶ P : (m : M) → N(m) → U

▶ 0P : P(0, 0N)

▶ SP : (m : M) (n : N(m)) → P(m, n) → P(S(m), SN(n))

Instantiate A as follows:

A(−) ≡def (n : N(m)) → P(m, n)

0A ≡def . . .

SA ≡def . . .

Prove (m : M) → I (m) by Z-induction.

Deduce (m : M) (n : N(m)) → P(m, n) compatible with 0P and SP .



Deriving N-induction

Given:

▶ P : (m : M) → N(m) → U

▶ 0P : P(0, 0N)

▶ SP : (m : M) (n : N(m)) → P(m, n) → P(S(m), SN(n))

Instantiate A as follows:

A(−) ≡def (n : N(m)) → P(m, n)

0A ≡def . . .

SA ≡def . . .

Prove (m : M) → I (m) by Z-induction.

Deduce (m : M) (n : N(m)) → P(m, n) compatible with 0P and SP .



Deriving N-induction

Given:

▶ P : (m : M) → N(m) → U

▶ 0P : P(0, 0N)

▶ SP : (m : M) (n : N(m)) → P(m, n) → P(S(m), SN(n))

Instantiate A as follows:

A(−) ≡def (n : N(m)) → P(m, n)

0A ≡def . . .

SA ≡def . . .

Prove (m : M) → I (m) by Z-induction.

Deduce (m : M) (n : N(m)) → P(m, n) compatible with 0P and SP .


