\mathbb{N} from \mathbb{Z}

Christian Sattler \& David Wärn

Terminology

\mathbb{N} is any type freely generated by:

- an element $0: \mathbb{N}$,
- a self-map $S: \mathbb{N} \rightarrow \mathbb{N}$.

Terminology

\mathbb{N} is any type freely generated by:

- an element $0: \mathbb{N}$,
- a self-map $S: \mathbb{N} \rightarrow \mathbb{N}$.
\mathbb{Z} is any type freely generated by:
- an element $0: \mathbb{Z}$,
- a self-equivalence $S: \mathbb{Z} \rightarrow \mathbb{Z}$.

\mathbb{Z}-induction

Given

- $P: \mathbb{Z} \rightarrow \mathrm{U}$,
- $0_{P}: P(0)$,
- $S_{P}:(x: \mathbb{Z}) \rightarrow P(x) \simeq P(S(x))$,
obtain
- $p:(x: \mathbb{Z}) \rightarrow P(x)$,
- $p(0)=0_{p}$,
- $p(S(x))=S_{P}(p(x))$.

Our result

Our setting is type theory with:

- $1, \Sigma,=$
- Π with funext
- 2 with large elimination (or descent)

Our result

Our setting is type theory with:

- $1, \Sigma,=$
- Π with funext
- 2 with large elimination (or descent)

Theorem (Sattler and W.)
Given \mathbb{Z}, can construct \mathbb{N}.
We have two proofs. We present one of them in this talk.

Motivation

Where does \mathbb{Z} come from?

Motivation

Where does \mathbb{Z} come from?
Theorem
If S^{1} has large elimination, then ΩS^{1} is freely generated by:

- refl: ΩS^{1}
- - loop : $\Omega S^{1} \simeq \Omega S^{1}$

Motivation

Where does \mathbb{Z} come from?
Theorem
If S^{1} has large elimination, then ΩS^{1} is freely generated by:

- refl: ΩS^{1}
- - . loop : $\Omega S^{1} \simeq \Omega S^{1}$

Thus $\Omega S^{1}=\mathbb{Z}$.

Previous work

Rijke-Shulman 17: construct \mathbb{N} from \mathbb{Z} given impredicative Prop and a universe

Previous work

Rijke-Shulman 17: construct \mathbb{N} from \mathbb{Z} given impredicative Prop and a universe

Rose 20: constructs \mathbb{N} from \mathbb{Z} given a univalent universe

Previous work

Rijke-Shulman 17: construct \mathbb{N} from \mathbb{Z} given impredicative Prop and a universe

Rose 20: constructs \mathbb{N} from \mathbb{Z} given a univalent universe
Rasekh 21: constructs \mathbb{N} from \mathbb{Z} given impredicative Prop

Previous work

Rijke-Shulman 17: construct \mathbb{N} from \mathbb{Z} given impredicative Prop and a universe

Rose 20: constructs \mathbb{N} from \mathbb{Z} given a univalent universe
Rasekh 21: constructs \mathbb{N} from \mathbb{Z} given impredicative Prop

Idea

How are \mathbb{N} and \mathbb{Z} related?

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

- have $\mathbf{1}+\mathbb{N} \simeq \mathbb{N}$,

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

- have $\mathbf{1}+\mathbb{N} \simeq \mathbb{N}$,
so $\operatorname{N}+\mathbf{1}+\mathbb{N} \simeq \mathbb{N}+(\mathbf{1}+\mathbb{N}) \simeq(\mathbb{N}+\mathbf{1})+\mathbb{N} \simeq \mathbb{N}+\mathbf{1}+\mathbb{N}$,

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

- have $\mathbf{1}+\mathbb{N} \simeq \mathbb{N}$,
- so $\mathbb{N}+\mathbf{1}+\mathbb{N} \simeq \mathbb{N}+(\mathbf{1}+\mathbb{N}) \simeq(\mathbb{N}+\mathbf{1})+\mathbb{N} \simeq \mathbb{N}+\mathbf{1}+\mathbb{N}$,
- together with $*: \mathbf{1}$ this gives $\mathbb{Z} \rightarrow \mathbb{N}+\mathbf{1}+\mathbb{N}$.

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

- have $\mathbf{1}+\mathbb{N} \simeq \mathbb{N}$,
- so $\mathbb{N}+\mathbf{1}+\mathbb{N} \simeq \mathbb{N}+(\mathbf{1}+\mathbb{N}) \simeq(\mathbb{N}+\mathbf{1})+\mathbb{N} \simeq \mathbb{N}+\mathbf{1}+\mathbb{N}$,
- together with $*: \mathbf{1}$ this gives $\mathbb{Z} \rightarrow \mathbb{N}+\mathbf{1}+\mathbb{N}$.

Idea

How are \mathbb{N} and \mathbb{Z} related?
Given \mathbb{N}, can construct \mathbb{Z} as follows:

- have $\mathbf{1}+\mathbb{N} \simeq \mathbb{N}$,
- so $\mathbb{N}+\mathbf{1}+\mathbb{N} \simeq \mathbb{N}+(\mathbf{1}+\mathbb{N}) \simeq(\mathbb{N}+\mathbf{1})+\mathbb{N} \simeq \mathbb{N}+\mathbf{1}+\mathbb{N}$,
- together with $*: \mathbf{1}$ this gives $\mathbb{Z} \rightarrow \mathbb{N}+\mathbf{1}+\mathbb{N}$.

This characterizes negative, zero, and positive integers.

Idea

Same works given any types A and B with $A+B \simeq B$ and $*: A$.

Idea

Same works given any types A and B with $A+B \simeq B$ and $*: A$.
Lemma
$\mathbb{Z}+\mathbb{Z} \simeq \mathbb{Z}$.
Proof.
Via doubling and halving (direct integer induction).

Idea

Same works given any types A and B with $A+B \simeq B$ and $*: A$.
Lemma
$\mathbb{Z}+\mathbb{Z} \simeq \mathbb{Z}$.
Proof.
Via doubling and halving (direct integer induction).
This induces:

- $\mathbb{Z} \rightarrow \mathbb{Z}+\mathbb{Z}+\mathbb{Z}$,
- hence sign : $\mathbb{Z} \rightarrow \mathbf{1}+\mathbf{1}+\mathbf{1}$,
- hence a decomposition $\mathbb{Z} \simeq \mathbb{Z}^{-}+\mathbb{Z}^{0}+\mathbb{Z}^{+}$ with $S(x) \in \mathbb{Z}^{+}$iff $x \in \mathbb{Z}^{0}+\mathbb{Z}^{+}$.

Idea

Aim: define \mathbb{N} as \sum-type over $M \equiv_{\text {def }} \mathbb{Z}^{0}+\mathbb{Z}^{+}$.

Idea

Aim: define \mathbb{N} as \sum-type over $M \equiv_{\text {def }} \mathbb{Z}^{0}+\mathbb{Z}^{+}$.
Both

- definition of \mathbb{N}
- derivation of \mathbb{N}-induction
use the idea of partially defined inductive functions.

Ordering

Can define subtraction (-) : $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$ by integer induction.

Ordering

Can define subtraction (-): $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$ by integer induction.
Take $x \leq y$ to mean $x-y \in \mathbb{Z}^{-}+\mathbb{Z}^{0}$.

Ordering

Can define subtraction (-): $\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}$ by integer induction.
Take $x \leq y$ to mean $x-y \in \mathbb{Z}^{-}+\mathbb{Z}^{0}$.
Have:

- if $x \leq y$ then $x \leq S(y)$
- if $S(x) \leq y$ then $x \leq y$
- $S(x) \leq S(y)$ iff $x \leq y$
- $x \leq 0$ iff $x \in \mathbb{Z}^{0}$
- $x \leq x$

Inductive functions

Let $A: M \rightarrow \mathrm{U}$ with:

- $0_{A}:\left(x: \mathbb{Z}^{0}\right) \rightarrow A(x)$
- $S_{A}:(x: M) \rightarrow A(x) \rightarrow A(S(x))$

Inductive functions

Let $A: M \rightarrow \mathrm{U}$ with:

- $0_{A}:\left(x: \mathbb{Z}^{0}\right) \rightarrow A(x)$
- $S_{A}:(x: M) \rightarrow A(x) \rightarrow A(S(x))$

Define $B: M \rightarrow \mathrm{U}$ as

$$
B(u) \equiv_{\operatorname{def}}(x: M) \rightarrow x \leq u \rightarrow A(x) .
$$

Inductive functions

Let $A: M \rightarrow \mathrm{U}$ with:

- $0_{A}:\left(x: \mathbb{Z}^{0}\right) \rightarrow A(x)$
- $S_{A}:(x: M) \rightarrow A(x) \rightarrow A(S(x))$

Define $B: M \rightarrow \mathrm{U}$ as

$$
B(u) \equiv_{\operatorname{def}}(x: M) \rightarrow x \leq u \rightarrow A(x)
$$

Have canonical maps:

- $\operatorname{res}_{u}: B(S(u)) \rightarrow B(u)$
- $\mathrm{ext}_{u}: B(u) \rightarrow B(S(u))$

Inductive functions

Let $A: M \rightarrow \mathrm{U}$ with:

- $0_{A}:\left(x: \mathbb{Z}^{0}\right) \rightarrow A(x)$
- $S_{A}:(x: M) \rightarrow A(x) \rightarrow A(S(x))$

Define $B: M \rightarrow \mathrm{U}$ as

$$
B(u) \equiv_{\operatorname{def}}(x: M) \rightarrow x \leq u \rightarrow A(x)
$$

Have canonical maps:

- res $_{u}: B(S(u)) \rightarrow B(u)$
- $\operatorname{ext}_{u}: B(u) \rightarrow B(S(u))$

Say $f: B(u)$ is inductive if $\operatorname{res}_{u}\left(\operatorname{ext}_{u}(f)\right)=f$. Write $I(u)$ for type of inductive functions.

Rolling rule

For $t: X \rightarrow X$, let $\operatorname{fix}(f) \equiv_{\operatorname{def}}(x: X) \times(f(x)=x)$.

Rolling rule

For $t: X \rightarrow X$, let fix $(f) \equiv_{\operatorname{def}}(x: X) \times(f(x)=x)$.

Lemma
$\operatorname{fix}(f \circ g) \simeq \operatorname{fix}(g \circ f)$ for $f: X \rightarrow Y, g: Y \rightarrow X$.

Rolling rule

For $t: X \rightarrow X$, let fix $(f) \equiv_{\operatorname{def}}(x: X) \times(f(x)=x)$.

Lemma
$\operatorname{fix}(f \circ g) \simeq \operatorname{fix}(g \circ f)$ for $f: X \rightarrow Y, g: Y \rightarrow X$.
Proof.
Both types are equivalent to
$(x: X) \times(y: Y) \times(f(x)=y) \times(g(y)=x)$.

Inductive functions (cont.)

$$
\begin{aligned}
I(0) & \simeq \operatorname{fix}\left(\text { res }_{0} \circ \operatorname{ext}_{0}\right) \\
& \simeq \operatorname{fix}\left(-\mapsto 0_{A}\right) \\
& \simeq \mathbf{1}
\end{aligned}
$$

Inductive functions (cont.)

$$
\begin{aligned}
I(0) & \simeq \operatorname{fix}\left(\text { res }_{0} \circ \operatorname{ext}_{0}\right) \\
& \simeq \operatorname{fix}\left(-\mapsto 0_{A}\right) \\
& \simeq \mathbf{1}
\end{aligned}
$$

$$
\begin{aligned}
I(S(u)) & \simeq \operatorname{fix}\left(\operatorname{res}_{S(u)} \circ \operatorname{ext}_{S(u)}\right) \\
& \simeq \operatorname{fix}\left(\operatorname{ext}_{u} \circ \operatorname{res}_{u}\right) \\
& \simeq \operatorname{fix}\left(\operatorname{res}_{u} \circ \operatorname{ext}_{u}\right) \\
& \simeq I(u)
\end{aligned}
$$

Defining \mathbb{N}

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv \operatorname{Def} M \\
0_{A}(-) & \equiv \operatorname{Def} 0 \\
S_{A}(x) & \equiv \operatorname{Def} S(x)
\end{aligned}
$$

Defining \mathbb{N}

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv \equiv_{\operatorname{def}} M \\
0_{A}(-) & \equiv \equiv_{\operatorname{def}} 0 \\
S_{A}(x) & \equiv \equiv_{\operatorname{def}} S(x)
\end{aligned}
$$

Then define naturals:

$$
\begin{aligned}
N(m) & \equiv_{\operatorname{def}}(f: l(m)) \times(f(m)=m) \\
\mathbb{N} & \equiv_{\operatorname{def}}(m: M) \times N(m)
\end{aligned}
$$

Defining \mathbb{N}

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv \equiv_{\operatorname{def}} M \\
0_{A}(-) & \equiv \operatorname{Def} 0 \\
S_{A}(x) & \equiv \operatorname{def} S(x)
\end{aligned}
$$

Then define naturals:

$$
\begin{aligned}
N(m) & \equiv_{\operatorname{def}}(f: I(m)) \times(f(m)=m) \\
\mathbb{N} & \equiv_{\operatorname{def}}(m: M) \times N(m)
\end{aligned}
$$

Have:

- unique element $\left(0,0_{N}\right)$ of $\left(m: \mathbb{Z}^{0}\right) \times N(m)$
- $S_{N}:(m: M) \rightarrow N(m) \simeq N(S(m))$

Deriving \mathbb{N}-induction

Given:
$\rightarrow P:(m: M) \rightarrow N(m) \rightarrow U$

- $0_{P}: P\left(0,0_{N}\right)$
- $S_{P}:(m: M)(n: N(m)) \rightarrow P(m, n) \rightarrow P\left(S(m), S_{N}(n)\right)$

Deriving \mathbb{N}-induction

Given:

- $P:(m: M) \rightarrow N(m) \rightarrow \mathrm{U}$
- $0_{P}: P\left(0,0_{N}\right)$
- $S_{P}:(m: M)(n: N(m)) \rightarrow P(m, n) \rightarrow P\left(S(m), S_{N}(n)\right)$

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv_{\operatorname{def}}(n: N(m)) \rightarrow P(m, n) \\
0_{A} & \equiv_{\operatorname{def}} \cdots \\
S_{A} & \equiv_{\operatorname{def}} \cdots
\end{aligned}
$$

Deriving \mathbb{N}-induction

Given:

- $P:(m: M) \rightarrow N(m) \rightarrow \mathrm{U}$
- $0_{P}: P\left(0,0_{N}\right)$
- $S_{P}:(m: M)(n: N(m)) \rightarrow P(m, n) \rightarrow P\left(S(m), S_{N}(n)\right)$

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv_{\operatorname{def}}(n: N(m)) \rightarrow P(m, n) \\
0_{A} & \equiv_{\operatorname{def}} \cdots \\
S_{A} & \equiv_{\text {def }} \cdots
\end{aligned}
$$

Prove $(m: M) \rightarrow I(m)$ by \mathbb{Z}-induction.

Deriving \mathbb{N}-induction

Given:

- $P:(m: M) \rightarrow N(m) \rightarrow \mathrm{U}$
- $0_{P}: P\left(0,0_{N}\right)$
- $S_{P}:(m: M)(n: N(m)) \rightarrow P(m, n) \rightarrow P\left(S(m), S_{N}(n)\right)$

Instantiate A as follows:

$$
\begin{aligned}
A(-) & \equiv_{\text {def }}(n: N(m)) \rightarrow P(m, n) \\
0_{A} & \equiv_{\text {def }} \cdots \\
S_{A} & \equiv_{\text {def }} \cdots
\end{aligned}
$$

Prove $(m: M) \rightarrow I(m)$ by \mathbb{Z}-induction.
Deduce $(m: M)(n: N(m)) \rightarrow P(m, n)$ compatible with 0_{P} and S_{P}.

