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Terminology

N is any type freely generated by:

▶ an element 0 : N,
▶ a self-map S : N → N.

Z is any type freely generated by:

▶ an element 0 : Z,
▶ a self-equivalence S : Z → Z.
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Z-induction

Given

▶ P : Z → U,

▶ 0P : P(0),

▶ SP : (x : Z) → P(x) ≃ P(S(x)),

obtain

▶ p : (x : Z) → P(x),

▶ p(0) = 0P ,

▶ p(S(x)) = SP(p(x)).



Our result

Our setting is type theory with:

▶ 1, Σ, =

▶ Π with funext

▶ 2 with large elimination (or descent)

Theorem (Sattler and W.)

Given Z, can construct N.
We have two proofs. We present one of them in this talk.
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Motivation

Where does Z come from?

Theorem
If S1 has large elimination, then ΩS1 is freely generated by:

▶ refl : ΩS1

▶ − · loop : ΩS1 ≃ ΩS1

Thus ΩS1 = Z.
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Idea

How are N and Z related?

Given N, can construct Z as follows:

▶ have 1+ N ≃ N,
▶ so N+ 1+ N ≃ N+ (1+ N) ≃ (N+ 1) + N ≃ N+ 1+ N,
▶ together with ∗ : 1 this gives Z → N+ 1+ N.

This characterizes negative, zero, and positive integers.
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Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Same works given any types A and B with A+ B ≃ B and ∗ : A.

Lemma
Z+ Z ≃ Z.

Proof.
Via doubling and halving (direct integer induction).

This induces:

▶ Z → Z+ Z+ Z,
▶ hence sign : Z → 1+ 1+ 1,

▶ hence a decomposition Z ≃ Z− + Z0 + Z+

with S(x) ∈ Z+ iff x ∈ Z0 + Z+.



Idea

Aim: define N as Σ-type over M ≡def Z0 + Z+.

Both

▶ definition of N
▶ derivation of N-induction

use the idea of partially defined inductive functions.
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Ordering

Can define subtraction (−) : Z → Z → Z by integer induction.

Take x ≤ y to mean x − y ∈ Z− + Z0.

Have:

▶ if x ≤ y then x ≤ S(y)

▶ if S(x) ≤ y then x ≤ y

▶ S(x) ≤ S(y) iff x ≤ y

▶ x ≤ 0 iff x ∈ Z0

▶ x ≤ x
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Inductive functions

Let A : M → U with:

▶ 0A : (x : Z0) → A(x)

▶ SA : (x : M) → A(x) → A(S(x))

Define B : M → U as

B(u) ≡def (x : M) → x ≤ u → A(x).

Have canonical maps:

▶ resu : B(S(u)) → B(u)

▶ extu : B(u) → B(S(u))

Say f : B(u) is inductive if resu(extu(f )) = f .
Write I (u) for type of inductive functions.
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Rolling rule

For t : X → X , let fix(f ) ≡def (x : X )× (f (x) = x).

Lemma
fix(f ◦ g) ≃ fix(g ◦ f ) for f : X → Y , g : Y → X .

Proof.
Both types are equivalent to
(x : X )× (y : Y )× (f (x) = y)× (g(y) = x).
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Inductive functions (cont.)

I (0) ≃ fix(res0 ◦ ext0)
≃ fix(− 7→ 0A)

≃ 1

I (S(u)) ≃ fix(resS(u) ◦ extS(u))
≃ fix(extu ◦ resu)
≃ fix(resu ◦ extu)
≃ I (u)
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Defining N

Instantiate A as follows:

A(−) ≡def M

0A(−) ≡def 0

SA(x) ≡def S(x)

Then define naturals:

N(m) ≡def (f : I (m))× (f (m) = m)

N ≡def (m : M)× N(m)

Have:

▶ unique element (0, 0N) of (m : Z0)× N(m)

▶ SN : (m : M) → N(m) ≃ N(S(m))
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Deriving N-induction

Given:

▶ P : (m : M) → N(m) → U

▶ 0P : P(0, 0N)

▶ SP : (m : M) (n : N(m)) → P(m, n) → P(S(m), SN(n))

Instantiate A as follows:

A(−) ≡def (n : N(m)) → P(m, n)

0A ≡def . . .

SA ≡def . . .

Prove (m : M) → I (m) by Z-induction.

Deduce (m : M) (n : N(m)) → P(m, n) compatible with 0P and SP .
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