${\mathbb N}$ from ${\mathbb Z}$

Christian Sattler & David Wärn

Terminology

 $\ensuremath{\mathbb{N}}$ is any type freely generated by:

- ▶ an element $0 : \mathbb{N}$,
- ▶ a self-map $S : \mathbb{N} \to \mathbb{N}$.

Terminology

 $\ensuremath{\mathbb{N}}$ is any type freely generated by:

- ▶ an element 0 : N,
- ▶ a self-map $S : \mathbb{N} \to \mathbb{N}$.

 $\ensuremath{\mathbb{Z}}$ is any type freely generated by:

- ▶ an element 0 : Z,
- ▶ a self-equivalence $S : \mathbb{Z} \to \mathbb{Z}$.

$\mathbb{Z}\text{-induction}$

Given

P: Z → U,
0_P: P(0),
S_P: (x : Z) → P(x) ≃ P(S(x)),
obtain

 $\blacktriangleright p(S(x)) = S_P(p(x)).$

Our result

Our setting is type theory with:

- 1, Σ, =
- Π with funext
- ▶ 2 with large elimination (or descent)

Our result

Our setting is type theory with:

- 1, Σ, =
- Π with funext
- ▶ 2 with large elimination (or descent)

Theorem (Sattler and W.)

Given \mathbb{Z} , can construct \mathbb{N} .

We have two proofs. We present one of them in this talk.

Motivation

Where does $\ensuremath{\mathbb{Z}}$ come from?

Motivation

Where does \mathbb{Z} come from?

Theorem

If S^1 has large elimination, then ΩS^1 is freely generated by:

- ► refl : ΩS^1
- $\blacktriangleright \ -\cdot \operatorname{loop}: \Omega S^1 \simeq \Omega S^1$

Motivation

Where does \mathbb{Z} come from?

Theorem

If S^1 has large elimination, then ΩS^1 is freely generated by:

- ► refl : ΩS^1
- \blacktriangleright $-\cdot \operatorname{loop} : \Omega S^1 \simeq \Omega S^1$

Thus $\Omega S^1 = \mathbb{Z}$.

Rose 20: constructs $\mathbb N$ from $\mathbb Z$ given a univalent universe

Rose 20: constructs ${\mathbb N}$ from ${\mathbb Z}$ given a univalent universe

Rasekh 21: constructs $\mathbb N$ from $\mathbb Z$ given impredicative Prop

Rose 20: constructs ${\mathbb N}$ from ${\mathbb Z}$ given a univalent universe

Rasekh 21: constructs $\mathbb N$ from $\mathbb Z$ given impredicative Prop

Given \mathbb{N} , can construct \mathbb{Z} as follows:

Given $\mathbb N,$ can construct $\mathbb Z$ as follows:

 $\blacktriangleright \text{ have } \mathbf{1} + \mathbb{N} \simeq \mathbb{N},$

Given $\mathbb N,$ can construct $\mathbb Z$ as follows:

$$\blacktriangleright$$
 have $\mathbf{1} + \mathbb{N} \simeq \mathbb{N}$,

▶ so
$$\mathbb{N} + \mathbf{1} + \mathbb{N} \simeq \mathbb{N} + (\mathbf{1} + \mathbb{N}) \simeq (\mathbb{N} + \mathbf{1}) + \mathbb{N} \simeq \mathbb{N} + \mathbf{1} + \mathbb{N}$$
,

Given $\mathbb N,$ can construct $\mathbb Z$ as follows:

$$\blacktriangleright \ \mathsf{have} \ \mathbf{1} + \mathbb{N} \simeq \mathbb{N},$$

▶ so
$$\mathbb{N} + 1 + \mathbb{N} \simeq \mathbb{N} + (1 + \mathbb{N}) \simeq (\mathbb{N} + 1) + \mathbb{N} \simeq \mathbb{N} + 1 + \mathbb{N}$$
,

• together with $*: \mathbf{1}$ this gives $\mathbb{Z} \to \mathbb{N} + \mathbf{1} + \mathbb{N}$.

Given $\mathbb N,$ can construct $\mathbb Z$ as follows:

$$\blacktriangleright \ \mathsf{have} \ \mathbf{1} + \mathbb{N} \simeq \mathbb{N},$$

▶ so
$$\mathbb{N} + 1 + \mathbb{N} \simeq \mathbb{N} + (1 + \mathbb{N}) \simeq (\mathbb{N} + 1) + \mathbb{N} \simeq \mathbb{N} + 1 + \mathbb{N}$$
,

• together with $*: \mathbf{1}$ this gives $\mathbb{Z} \to \mathbb{N} + \mathbf{1} + \mathbb{N}$.

Given $\mathbb N,$ can construct $\mathbb Z$ as follows:

$$\blacktriangleright$$
 have $\mathbf{1} + \mathbb{N} \simeq \mathbb{N}$,

▶ so
$$\mathbb{N} + \mathbf{1} + \mathbb{N} \simeq \mathbb{N} + (\mathbf{1} + \mathbb{N}) \simeq (\mathbb{N} + \mathbf{1}) + \mathbb{N} \simeq \mathbb{N} + \mathbf{1} + \mathbb{N}$$
,

• together with $*: \mathbf{1}$ this gives $\mathbb{Z} \to \mathbb{N} + \mathbf{1} + \mathbb{N}$.

This characterizes negative, zero, and positive integers.

Same works given any types A and B with $A + B \simeq B$ and * : A.

Idea

Same works given any types A and B with $A + B \simeq B$ and * : A.

Lemma $\mathbb{Z} + \mathbb{Z} \simeq \mathbb{Z}.$

Proof.

Via doubling and halving (direct integer induction).

Idea

Same works given any types A and B with $A + B \simeq B$ and * : A.

Lemma $\mathbb{Z} + \mathbb{Z} \simeq \mathbb{Z}.$

Proof.

Via doubling and halving (direct integer induction).

This induces:

$$\blacktriangleright \mathbb{Z} \to \mathbb{Z} + \mathbb{Z} + \mathbb{Z},$$

- $\blacktriangleright \text{ hence sign}: \mathbb{Z} \to \mathbf{1} + \mathbf{1} + \mathbf{1},$
- ▶ hence a decomposition $\mathbb{Z} \simeq \mathbb{Z}^- + \mathbb{Z}^0 + \mathbb{Z}^+$ with $S(x) \in \mathbb{Z}^+$ iff $x \in \mathbb{Z}^0 + \mathbb{Z}^+$.

Aim: define \mathbb{N} as Σ -type over $M \equiv_{def} \mathbb{Z}^0 + \mathbb{Z}^+$.

Aim: define \mathbb{N} as Σ -type over $M \equiv_{def} \mathbb{Z}^0 + \mathbb{Z}^+$.

Both

- ▶ definition of N
- ▶ derivation of N-induction

use the idea of partially defined inductive functions.

Ordering

Can define subtraction $(-):\mathbb{Z}\to\mathbb{Z}\to\mathbb{Z}$ by integer induction.

Ordering

Can define subtraction $(-): \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ by integer induction. Take $x \leq y$ to mean $x - y \in \mathbb{Z}^- + \mathbb{Z}^0$.

Ordering

Can define subtraction $(-):\mathbb{Z}\to\mathbb{Z}\to\mathbb{Z}$ by integer induction.

Take $x \leq y$ to mean $x - y \in \mathbb{Z}^- + \mathbb{Z}^0$.

Have:

if x ≤ y then x ≤ S(y)
if S(x) ≤ y then x ≤ y
S(x) ≤ S(y) iff x ≤ y
x ≤ 0 iff x ∈ Z⁰
x ≤ x

Let
$$A : M \to U$$
 with:
• $0_A : (x : \mathbb{Z}^0) \to A(x)$
• $S_A : (x : M) \to A(x) \to A(S(x))$

Let
$$A : M \to U$$
 with:
• $0_A : (x : \mathbb{Z}^0) \to A(x)$
• $S_A : (x : M) \to A(x) \to A(S(x))$

Define $B: M \to U$ as

$$B(u) \equiv_{\mathsf{def}} (x : M) \to x \le u \to A(x).$$

Let
$$A : M \to U$$
 with:
• $0_A : (x : \mathbb{Z}^0) \to A(x)$
• $S_A : (x : M) \to A(x) \to A(S(x))$

Define $B: M \to U$ as

$$B(u) \equiv_{\mathsf{def}} (x : M) \to x \leq u \to A(x).$$

Have canonical maps:

▶
$$\operatorname{res}_u : B(S(u)) \to B(u)$$

▶ $\operatorname{ext}_u : B(u) \to B(S(u))$

Let
$$A : M \to U$$
 with:
• $0_A : (x : \mathbb{Z}^0) \to A(x)$
• $S_A : (x : M) \to A(x) \to A(S(x))$

Define $B: M \to U$ as

$$B(u) \equiv_{\mathsf{def}} (x : M) \to x \le u \to A(x).$$

Have canonical maps:

▶
$$\operatorname{res}_u : B(S(u)) \to B(u)$$

▶ $\operatorname{ext}_u : B(u) \to B(S(u))$

Say f : B(u) is inductive if $res_u(ext_u(f)) = f$. Write I(u) for type of inductive functions.

Rolling rule

For $t: X \to X$, let fix $(f) \equiv_{def} (x:X) \times (f(x) = x)$.

Rolling rule

For
$$t: X \to X$$
, let $fix(f) \equiv_{def} (x:X) \times (f(x) = x)$.

Lemma

 $\mathsf{fix}(f \circ g) \simeq \mathsf{fix}(g \circ f)$ for $f : X \to Y$, $g : Y \to X$.

Rolling rule

For
$$t: X \to X$$
, let fix $(f) \equiv_{def} (x: X) \times (f(x) = x)$.

Lemma

$$\mathsf{fix}(f \circ g) \simeq \mathsf{fix}(g \circ f) ext{ for } f: X o Y, \ g: Y o X.$$

Proof.

Both types are equivalent to $(x : X) \times (y : Y) \times (f(x) = y) \times (g(y) = x).$ Inductive functions (cont.)

$$egin{aligned} &I(0)\simeq \mathsf{fix}(\mathsf{res}_0\circ\mathsf{ext}_0)\ &\simeq \mathsf{fix}(-\mapsto \mathsf{0}_A)\ &\simeq \mathbf{1} \end{aligned}$$

Inductive functions (cont.)

$$egin{aligned} &I(0)\simeq \mathsf{fix}(\mathsf{res}_0\circ\mathsf{ext}_0)\ &\simeq \mathsf{fix}(-\mapsto \mathfrak{0}_{\mathcal{A}})\ &\simeq \mathbf{1} \end{aligned}$$

$$egin{aligned} &I(S(u))\simeq ext{fix}(ext{res}_{S(u)}\circ ext{ext}_{S(u)})\ &\simeq ext{fix}(ext{ext}_u\circ ext{res}_u)\ &\simeq ext{fix}(ext{res}_u\circ ext{ext}_u)\ &\simeq ext{fix}(ext{u})\ &\simeq I(u) \end{aligned}$$

Defining \mathbb{N}

Instantiate A as follows:

$$A(-) \equiv_{def} M$$
$$0_A(-) \equiv_{def} 0$$
$$S_A(x) \equiv_{def} S(x)$$

Defining \mathbb{N}

Instantiate A as follows:

$$A(-) \equiv_{def} M$$

 $0_A(-) \equiv_{def} 0$
 $S_A(x) \equiv_{def} S(x)$

Then define naturals:

$$N(m) \equiv_{\mathsf{def}} (f : I(m)) \times (f(m) = m)$$
$$\mathbb{N} \equiv_{\mathsf{def}} (m : M) \times N(m)$$

Defining \mathbb{N}

Instantiate A as follows:

$$A(-) \equiv_{def} M$$

$$0_A(-) \equiv_{def} 0$$

$$S_A(x) \equiv_{def} S(x)$$

Then define naturals:

$$N(m) \equiv_{def} (f : I(m)) \times (f(m) = m)$$
$$\mathbb{N} \equiv_{def} (m : M) \times N(m)$$

Have:

• unique element $(0, 0_N)$ of $(m : \mathbb{Z}^0) \times N(m)$

$$\blacktriangleright S_N: (m:M) \to N(m) \simeq N(S(m))$$

Given:

Given:

Instantiate A as follows:

$$egin{aligned} & A(-) \equiv_{\mathsf{def}} (n:N(m)) o P(m,n) \ & 0_A \equiv_{\mathsf{def}} \dots \ & S_A \equiv_{\mathsf{def}} \dots \end{aligned}$$

Given:

Instantiate A as follows:

$$egin{aligned} & A(-) \equiv_{\mathsf{def}} (n:N(m)) o P(m,n) \ & 0_A \equiv_{\mathsf{def}} \dots \ & S_A \equiv_{\mathsf{def}} \dots \end{aligned}$$

Prove $(m: M) \rightarrow I(m)$ by \mathbb{Z} -induction.

Given:

Instantiate A as follows:

$$egin{aligned} \mathcal{A}(-) \equiv_{\mathsf{def}} (n: \mathcal{N}(m)) &
ightarrow \mathcal{P}(m, n) \ &0_{\mathcal{A}} \equiv_{\mathsf{def}} \dots \ &S_{\mathcal{A}} \equiv_{\mathsf{def}} \dots \end{aligned}$$

Prove $(m: M) \rightarrow I(m)$ by \mathbb{Z} -induction.

Deduce $(m: M)(n: N(m)) \rightarrow P(m, n)$ compatible with 0_P and S_P .