The **Category Interpretation Polarized and Directed Type Theory**

Thorsten Altenkirch and Jacob Neumann University of Nottingham HoTT-UF Workshop, Vienna, Austria 23 April 2023

• These slides:

- jacobneu.github.io/research/slides/HoTT-UF-2023.pdf
- A preprint will appear here: jacobneu.github.io/research/preprints/polarTT.pdf
- Agda formalization coming soon (link will be added to preprint and slides)

Univalent Mathematics: Groupoid Theory

versus

Category Theory

Recall A type in HoTT can be viewed as a ∞ -groupoid: the elements are the objects, the identity proofs are the morphisms, ...

A function $f : A \to B$ is automatically a functor w.r.t. this groupoid structure: using the J-rule, we can construct $ap_f p : f(a) =_B f(a')$ for each $p : a =_A a'$ and prove this preserves identities (refl) and composition (path concatenation)

Key observation We don't need to inspect the definition of f to define ap_f or to prove it respects identities and composition – once we have f, we have its functoriality

To define a category, we must define its morphisms explicitly and prove they satisfy the given laws.

To define a functor, we must define its morphism part explicitly and prove functoriality by hand.

If we want to do ∞ -category theory...

Summary: In univalent mathematics, groupoids are synthetic but categories are analytic

Moral: We *ought* to do directed type theory

Some Existing Directed TT/Synthetic CT Projects

- Harper and Licata 2-Dimensional Directed Type Theory (2011) [†]★
- Nuyts Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance (2015) [†]*
- Riehl and Shulman A type theory for synthetic ∞-categories (2017)
- Ahrens, North, and van der Wiede Semantics for two-dimensional type theory (2022) *
- Cisinski, Nguyen, and Walde Univalent Directed Type Theory (2023)
- No general definition of model, though perhaps includes semantics/interpretation
 2-dimensional encodes morphisms between substitutions

Contribution

Directed TT using CwFs Deep Polarity*

* Harper & Licata's work does partially address deep polarity

Thorsten Altenkirch and Jacob NeumannCategory Interp. of Polar & Directed TT

5 / 18

Our goal is to develop directed type theory following in the tradition of several landmark papers from the 1990s that paved the way for homotopy type theory:

- Dybjer's Internal Type Theory (1995)
 - Introduced categories with families as a model theory for type theory
 - Generalized algebraic theory more convenient to formalize in a computer proof assistant
- Hofmann and Streicher's *The Groupoid Interpretation of Type Theory* (1995)
 - Introduced the groupoid model of type theory, a CwF structure on the category of groupoids
 - Proved the independence of the Uniqueness of Identity Proofs

Next up in the Directed CwFs Transatlantic Tour

At the HoTT Conference (May 2023, Pittsburgh, USA), we'll present presheaf semantics for directed type theory, a directed analogue of these works:

- Hofmann and Streicher's Lifting Grothendieck Universes (1999, unpublished)
 - Established a technique for modelling universes in *presheaf models* of type theory

 Hofmann's Semantical analysis of higher-order abstract syntax (1999)

Gave presheaf semantics for a higher-order abstract syntax, which abstracts away cumbersome details about substitution and binding

Categories with Families

Defn. A **category with families (CwF)** is a (generalized) algebraic structure, consisting of:

- A category Con of *contexts* and *substitutions*, with a terminal object
 , the *empty context*
- A presheaf Ty: $Con^{op} \rightarrow Set of types$
- A presheaf Tm: $(\int Ty)^{op} \rightarrow Set$ of *terms*
- An operation of *context extension*:

 $\frac{\Gamma: \text{ Con } A: \text{ Ty } \Gamma}{\Gamma \triangleright A: \text{ Con}}$

so that $\Gamma \triangleright A$ is a 'locally representing object' (in the sense spelled out on the next slide)

For any Δ , Γ and any A: Ty Γ , $\operatorname{Con}(\Delta, \Gamma \triangleright A) \cong \sum_{\gamma: \operatorname{Con}(\Delta, \Gamma)} \operatorname{Tm}(\Delta, A[\gamma])$

natural in Δ .

The Groupoid Interpretation of Type Theory

The groupoid model of type theory is a CwF where

- Con is the category of groupoids
- Ty Γ is the set of Γ -indexed families of groupoids (i.e. functors $\Gamma \to \mathsf{Grpd})$

• ...

Further structure Can interpret dependent types and identity types in the groupoid model, and find types whose identity types violate UIP

Main Idea: Replace groupoids with categories!

The Category Interpretation of Type Theory

The category model of type theory is a CwF where

• Con is the category of **categories**

• . . .

• Ty Γ is the set of Γ -indexed families of categories (i.e. functors $\Gamma \rightarrow \mathsf{Cat})$

Further structure The category of categories comes equipped with the **opposite category** operation, which we can view as a functor Cat \rightarrow Cat.

- For each context Γ , there is a context Γ^-
- For each A : Ty Γ , there is a type A^- : Ty Γ

A **polarized category with families (PCwF)** is a (generalized) algebraic structure, consisting of:

- Con, , Ty, Tm as in the definition of CwF
- A functor (_)⁻: Con \rightarrow Con such that $(\Gamma^{-})^{-} = \Gamma$ and $\bullet^{-} = \bullet$
- For each Γ : Con, a function (_)⁻: Ty $\Gamma \rightarrow$ Ty Γ such that $(A^-)^- = A$
- Two operations of *context extension*: for *s* either + or -, $\frac{\Gamma: \text{ Con } A: \text{ Ty } \Gamma^{s}}{\Gamma \triangleright^{s} A: \text{ Con}}$

For any Δ , Γ and any A: Ty Γ , $\operatorname{Con}(\Delta, \Gamma \triangleright^{s} A) \cong \sum_{\gamma: \operatorname{Con}(\Delta, \Gamma)} \operatorname{Tm}(\Delta^{s}, A[\gamma^{s}]^{s})$

natural in Δ .

23 April 2023

Further structure In the groupoid model, we were able to interpret identity types. In the category model, we have **hom types**. $\underline{A: \text{ Ty } \Gamma} \quad a_0: \text{ Tm}(\Gamma, A^-) \quad a_1: \text{ Tm}(\Gamma, A)$ $a_0 \Rightarrow_A a_1: \text{ Ty } \Gamma$

Note the use of polarities to mark variances!

Notice This is the essential ingredient in making our types into **synthetic categories**.

Further structure The groupoid model also 'lives inside' the category model: we can take the **core** of a category \mathbb{C} , which is the largest groupoid that is a subcategory of \mathbb{C} (and of \mathbb{C}^{op}). We could perhaps treat this as an operation on contexts, but we're mainly interested in it at the type level:

$$\frac{A: \operatorname{Ty} \Gamma}{A^0: \operatorname{Ty} \Gamma} \qquad \frac{a: \operatorname{Tm}(\Gamma, A^0)}{+a: \operatorname{Tm}(\Gamma, A) \qquad -a: \operatorname{Tm}(\Gamma, A^-)}$$

23 April 2023 15

Core types allow us to state the **introduction rule** for hom types: a: $\mathsf{Tm}(\Gamma, A^0)$ refl_a: Tm(Γ , $-a \Rightarrow_A + a$) as well as the appropriate J-rules: for any $\overline{a'}$: Tm(Γ, A^0) $m: \operatorname{Tm}(\Gamma, M(+a', \operatorname{refl}_{a'})) \quad a'': \operatorname{Tm}(\Gamma, A) \quad q: \operatorname{Tm}(\Gamma, -a' \Rightarrow a'')$ $J_{M}^{+} m q$: Tm $(\Gamma, M(a'', q))$ $n: \operatorname{Tm}(\Gamma, N(-a', \operatorname{refl}_{a'})) \quad a: \operatorname{Tm}(\Gamma, A^{-}) \quad p: \operatorname{Tm}(\Gamma, a \Rightarrow +a')$ J_{N}^{-} n p: Tm(Γ , N(a, p))

Thorsten Altenkirch and Jacob Neumann Category Interp. of Polar & Directed TT

Proof of concept: Composition

Given • $x: \operatorname{Tm}(\Gamma, A^{-})$ • $y: \operatorname{Tm}(\Gamma, A^{0})$ • $z: \operatorname{Tm}(\Gamma, A)$ • $f: \operatorname{Tm}(\Gamma, x \Rightarrow +y)$ • $g: \operatorname{Tm}(\Gamma, -y \Rightarrow z)$

Define $f \cdot g : \operatorname{Tm}(\Gamma, x \Rightarrow z)$ as either $J_M^+ f g$ or $J_N^- g f$ where $M(a'', q) :\equiv x \Rightarrow a''$ and $N(a, p) :\equiv a \Rightarrow z$

Thorsten Altenkirch and Jacob Neumann Category Interp. of Polar & Directed TT

A directed category with families (DCwF) is a (generalized) algebraic structure, consisting of:

- \bullet Con, \bullet , Ty, Tm as in the definition of CwF
- The negation operations (_)⁻ and context extensions ▷^s as in the definition of PCwF
- Core types and the + and operations on terms
- The $_ \Rightarrow _$ type former with refl constructor and J eliminators

Thank you!