## Does Path Induction Need a Justification? A Husserlian Philosophy of HoTT

#### Stella Moon

University of California, Irvine Institut Wiener Kreis, Univesitaët Wien

HoTT/UF Workshop, Vienna 2023

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Bakcground Method Goals

## Background: Justifying Path Induction

• Ladyman and Presnell (2015): path induction can be justified from the **pre-mathematical concept of identity** 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bakcground Method Goals

## Background: Justifying Path Induction

- Ladyman and Presnell (2015): path induction can be justified from the **pre-mathematical concept of identity**
- P. Walsh (2017): Yes, path induction (identity elimination rule) can be justified to be **harmonious to the identity introduction rule**

Bakcground Method Goals

## Background: Justifying Path Induction

- Ladyman and Presnell (2015): path induction can be justified from the **pre-mathematical concept of identity**
- P. Walsh (2017): Yes, path induction (identity elimination rule) can be justified to be **harmonious to the identity introduction rule**
- Me: does path induction actually need a justification?

Bakcground Method Goals

## Method: Husserlian Philosophy of HoTT

#### • Enter the 'community of empathy' with the mathematicians

Bakcground Method Goals

## Method: Husserlian Philosophy of HoTT

- Enter the 'community of empathy' with the mathematicians
- Look at the mathematics from the perspective of the mathematical community,

Bakcground Method Goals

## Method: Husserlian Philosophy of HoTT

- Enter the 'community of empathy' with the mathematicians
- Look at the mathematics from the perspective of the mathematical community, while understanding what motivated the mathematicians.

Bakcground Method Goals

#### Goals of the Talk

• Explain the perspectives of the HoTT-community

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bakcground Method Goals

## Goals of the Talk

- Explain the perspectives of the HoTT-community
- Prove that path induction follows from the path lifting property

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bakcground Method Goals

## Goals of the Talk

- Explain the perspectives of the HoTT-community
- Prove that path induction follows from the path lifting property
- Thus: path induction does not need a pre-mathematical/harmonious justification.

Goals

#### Structure



#### 2 Path Induction



3 Path Lifting to Path Induction

Homotopy Type Theory Jnivalence

#### Outline



#### 2 Path Induction



伺 ト イ ヨ ト イ ヨ

6/32

Homotopy Type Theory Univalence

#### HoTT according to the HoTT-community

• Homotopy Type Theory is...

Homotopy Type Theory Univalence

#### HoTT according to the HoTT-community

• Homotopy Type Theory is...

an extension of MLTT with univalence axiom and higher inductive types.

Homotopy Type Theory Univalence

#### HoTT according to the HoTT-community

• Homotopy Type Theory is...

an extension of  $\mathsf{MLTT}$  with univalence axiom and higher inductive types.

[...] a new conception of foundations of mathematics, with intrinsic homotopical content,[...] and convenient machine implementations, which can serve as a practical aid to the working mathematician. (Univalent Foundations Program, 2013, Introduction)

Homotopy Type Theory Univalence

#### Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

э

伺 ト イヨト イヨト

Homotopy Type Theory Univalence

#### Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

The following are equivalent in HoTT (UFP, 2013, p.5):

Homotopy Type Theory Univalence

#### Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

The following are equivalent in HoTT (UFP, 2013, p.5): given p: A = B

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Homotopy Type Theory Univalence

## Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

The following are equivalent in HoTT (UFP, 2013, p.5): given p: A = B

(1) logical interpretation: a **logical proof** p of the proposition A = B,

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Homotopy Type Theory Univalence

#### Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

The following are equivalent in HoTT (UFP, 2013, p.5): given p: A = B

(1) logical interpretation: a **logical proof** p of the proposition A = B,

(2) topological interpretation: a **topological path**  $p:[0,1] \rightarrow \mathcal{U}$  such that p(0) = A and p(1) = B, and

Homotopy Type Theory Univalence

## Univalence Axiom

#### Definition

Univalence Axiom: equivalence is equivalent to identity.

The following are equivalent in HoTT (UFP, 2013, p.5): given p: A = B

(1) logical interpretation: a **logical proof** p of the proposition A = B,

(2) topological interpretation: a **topological path** 

 $p:[0,1] 
ightarrow \mathcal{U}$  such that p(0)=A and p(1)=B, and

(3) homotopical interpretation: a **homotopy equivalence** p between topological spaces A and B.

くロ と く 同 と く ヨ と 一

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

• All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

- All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.
- Given a type A and a term a : A, there is a term  $refl_a : a =_A a$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

- All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.
- Given a type A and a term a : A, there is a term refl<sub>a</sub> :  $a =_A a$ .
- The identity type on A is  $\prod_{x,y:A} (x =_A y)$ .

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

- All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.
- Given a type A and a term a : A, there is a term  $refl_a : a =_A a$ .
- The identity type on A is ∏<sub>x,y:A</sub>(x =<sub>A</sub> y). Logically interpreted as the proposition 'for any x and y in A, x = y.'

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

- All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.
- Given a type A and a term a : A, there is a term  $refl_a : a =_A a$ .
- The identity type on A is ∏<sub>x,y:A</sub>(x =<sub>A</sub> y). Logically interpreted as the proposition 'for any x and y in A, x = y.'
   topologically interpreted as the product of path spaces

伺下 イヨト イヨト

Homotopy Type Theory Univalence

#### Prelude for the non-HoTT-ists

- All types occur in the *Universe* U. E.g. 'A is a type', can be stated as A : U.
- Given a type A and a term a : A, there is a term  $refl_a : a =_A a$ .
- The identity type on A is ∏<sub>x,y:A</sub>(x =<sub>A</sub> y). Logically interpreted as the proposition 'for any x and y in A, x = y.'

topologically interpreted as the product of path spaces



. . . . . . . .

Definition Explanation Type Family as a Fibration Path Lifting Property

## Outline

#### In HoTT community's perspective: Univalence

#### 2 Path Induction

3 Path Lifting to Path Induction

Definition Explanation Type Family as a Fibration Path Lifting Property

#### Path Induction

#### Definition (Path induction)

Let A be a type, and

$$C:\prod_{x,y:A}(x=_A y)\to \mathcal{U}$$

be a family of types, and let a function

$$c:\prod_{x:A}C(x,x,\mathrm{refl}_x)$$

be such that  $c(x) : C(x, x, refl_x)$ .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition Explanation Type Family as a Fibration Path Lifting Property

#### Path Induction

#### Definition (Path induction (Cont'd))

#### Then there is a function

$$f:\prod_{x,y:A}\prod_{p:x=y}C(x,y,p),$$

such that

$$f(x, x, \operatorname{refl}_{x}) \equiv c(x).$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition Explanation Type Family as a Fibration Path Lifting Property

#### PI explained (via UA)

# Given a space A, let C be a predicate that takes any two points in A and a path between them.

< ロ > < 同 > < 三 > < 三 >

Definition Explanation Type Family as a Fibration Path Lifting Property

#### PI explained (via UA)

Given a **space** A, let C be a **predicate** that takes any **two points** in A and **a path** between them. We are given that for any x : A, we have the **proof** c(x) of  $C(x, x, refl_x)$ .

< ロ > < 同 > < 三 > < 三 >

Definition Explanation Type Family as a Fibration Path Lifting Property

#### PI explained (via UA)

Given a space A, let C be a predicate that takes any two points in A and a path between them. We are given that for any x : A, we have the proof c(x) of  $C(x, x, refl_x)$ . Then there is a function f taking any two points x, y in A and any path p between them to a proof f(x, y, p) of C(x, y, p)

Definition Explanation Type Family as a Fibration Path Lifting Property

#### PI explained (via UA)

Given a space A, let C be a predicate that takes any two points in A and a path between them. We are given that for any x : A, we have the proof c(x) of  $C(x, x, refl_x)$ . Then there is a function f taking any two points x, y in A and any path p between them to a proof f(x, y, p) of C(x, y, p) such that  $f(x, x, refl_x) \equiv c(x)$ .

# PI explained (via UA)

So given  $c(x) : C(x, x, refl_x)$ , path induction gives us a function f that generalises it to f(x, y, p) : C(x, y, p).

Motivation Definition HoTT community's perspective: Univalence **Explanation Path Induction** Type Family as a Fib Path Lifting to Path Induction Path Lifting Property

## PI explained (via UA)

So given  $c(x) : C(x, x, refl_x)$ , path induction gives us a function f that generalises it to f(x, y, p) : C(x, y, p).





< ロ > < 同 > < 三 > < 三 >

Definition Explanation **Type Family as a Fibration** Path Lifting Property

## Homotopical/Topological Interpretations of PI

The homotopical/topological interpretations allow us to treat identities as paths, identity types as path-spaces, and type families as 'fibrations' ( $\S$ 2.3)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation Definition HoTT community's perspective: Univalence Explanation Path Induction Type Family as a Fibration Path Lifting to Path Induction Path Lifting Property

## Homotopical/Topological Interpretations of PI

The homotopical/topological interpretations allow us to treat identities as paths, identity types as path-spaces, and type families as 'fibrations' ( $\S$ 2.3)

We think of a type family  $P : A \to U$  as a fibration with base space A, with P(x) being the fiber over x, and with  $\Sigma_{(x:A)}P(x)$  being the total space of the fibration, with first projection  $\Sigma_{(x:A)}P(x) \to A$ .

(4月) (4日) (4日)

Motivation Definition HoTT community's perspective: Univalence Explanation Path Induction Type Family as a Fibration Path Lifting to Path Induction Path Lifting Property

## Homotopical/Topological Interpretations of PI

The homotopical/topological interpretations allow us to treat identities as paths, identity types as path-spaces, and type families as 'fibrations' ( $\S$ 2.3)

We think of a type family  $P : A \to U$  as a fibration with base space A, with P(x) being the fiber over x, and with  $\Sigma_{(x:A)}P(x)$  being the total space of the fibration, with first projection  $\Sigma_{(x:A)}P(x) \to A$ . The defining property of a fibration is that given a path p : x = y in the base space A and a point u : P(x) in the fiber over x, we may lift the path p to a path in the total space starting at u (and this lifting can be done continuously). (§2.3)

イロト イポト イラト イラト

Definition Explanation **Type Family as a Fibration** Path Lifting Property

16 / 32

#### Type Families as Fibrations



Definition Explanation **Type Family as a Fibration** Path Lifting Property

#### Type Families as Fibrations



Definition Explanation **Type Family as a Fibration** Path Lifting Property

#### Type Families as Fibrations



3 🕨 🖌 3

Definition Explanation **Type Family as a Fibration** Path Lifting Property

#### Type Families as Fibrations



-

-

Definition Explanation Type Family as a Fibration Path Lifting Property

## Path Lifting Property

#### Definition (Path lifting Property)

Let A be a topological space with a point a.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Definition Explanation Type Family as a Fibration Path Lifting Property

## Path Lifting Property

#### Definition (Path lifting Property)

Let A be a topological space with a point a. Let  $p:[0,1] \rightarrow A$  be a path such that p(0) = a.

Definition Explanation Type Family as a Fibration Path Lifting Property

## Path Lifting Property

#### Definition (Path lifting Property)

Let A be a topological space with a point a. Let  $p:[0,1] \to A$  be a path such that p(0) = a. Given a map  $\pi : \tilde{C} \to A$  such that there is a point  $\tilde{a} \in \tilde{C}$ , where  $\pi(\tilde{a}) = a$ ,

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Definition Explanation Type Family as a Fibration Path Lifting Property

## Path Lifting Property

#### Definition (Path lifting Property)

Let A be a topological space with a point a. Let  $p:[0,1] \to A$  be a path such that p(0) = a. Given a map  $\pi : \tilde{C} \to A$  such that there is a point  $\tilde{a} \in \tilde{C}$ , where  $\pi(\tilde{a}) = a$ , we say that  $\pi$  has the **path lifting property with respect to** p just in case there is a path  $\tilde{p}:[0,1] \to \tilde{C}$  such that  $\pi \circ \tilde{p} = p$ .

< ロ > < 同 > < 回 > < 回 >

Definition Explanation Type Family as a Fibration Path Lifting Property

## Path Lifting Property



• = • •

HoTT community's perspective: Univalence Path Lifting to Path Induction

## Outline

#### 1 HoTT community's perspective: Univalence



#### 3 Path Lifting to Path Induction

## Path Lifting to Path Induction

#### Theorem (M.)

Path induction follows from path lifting.

伺 ト イヨト イヨト

## Path Lifting to Path Induction

#### Theorem (M.)

Path induction follows from path lifting.

#### Proof.

Let A be a type,  $C : \prod_{x,y:A} (x =_A y) \to U$  be a type familiy such that there is a function  $c : \prod_{x:A} C(x, x, \text{refl}_x)$  and  $c(x) : C(x, x, \text{refl}_x)$ .

## Path Lifting to Path Induction

#### Theorem (M.)

Path induction follows from path lifting.

#### Proof.

Let A be a type,  $C : \prod_{x,y:A} (x =_A y) \to U$  be a type familiy such that there is a function  $c : \prod_{x:A} C(x, x, \text{refl}_x)$  and  $c(x) : C(x, x, \text{refl}_x)$ . According to the homotopical/topological interpretations, the type family is interpreted as a fibration.

- 4 同 ト 4 ヨ ト 4 ヨ ト

## Path Lifting to Path Induction

#### Theorem (M.)

Path induction follows from path lifting.

#### Proof.

Let A be a type,  $C : \prod_{x,y:A} (x =_A y) \to \mathcal{U}$  be a type familiy such that there is a function  $c : \prod_{x:A} C(x, x, \operatorname{refl}_x)$  and  $c(x) : C(x, x, \operatorname{refl}_x)$ . According to the homotopical/topological interpretations, the type family is interpreted as a fibration. This means, we have  $\prod_{x,y:A} (x = y)$  as the base space, and  $\prod_{x,y:A} \sum_{p:x=y} C(x, y, p)$  as the total space.

ヘロト 人間 ト ヘヨト ヘヨト

#### Path Lifting to Path Induction (cont.)



3 🔺 🖌 🖻

#### Path Lifting to Path Induction (cont.)



3 🕨 🖌 3

#### Path Lifting to Path Induction (cont.)



( )

## Path Lifting to Path Induction (cont.)

#### Proof.

Let  $\pi : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p) \to A$  be such that  $\pi(c(a)) = a$  and it satisfies the path lifting property.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Path Lifting to Path Induction (cont.)

#### Proof.

Let  $\pi : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p) \to A$  be such that  $\pi(c(a)) = a$ and it satisfies the path lifting property. So for any arbitrary path qfrom point a to point b in A, there is a path  $\tilde{q}$  with a starting point c(a).

#### Path Lifting to Path Induction (cont.)



★ ∃ ► < ∃ ►</p>

#### Path Lifting to Path Induction (cont.)



## Path Lifting to Path Induction (cont.)

#### Proof.

Define 
$$f: \prod_{x,y:A} \prod_{p:x=y} C(x, y, p)$$

伺 ト イヨト イヨト

## Path Lifting to Path Induction (cont.)

#### Proof.

Define  $f : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p)$  be such that  $f(x, y, p) := \tilde{p}(c(x))$ , so f(x, y, p) is the end point of the lifted path.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Path Lifting to Path Induction (cont.)

#### Proof.

Define  $f : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p)$  be such that  $f(x, y, p) := \tilde{p}(c(x))$ , so f(x, y, p) is the end point of the lifted path. Then  $f(a, a, \operatorname{refl}_a)$  is c(a) since  $\operatorname{refl}_a$  is lifted to  $\operatorname{refl}_{c(a)}$ .

伺 ト イヨト イヨト

## Path Lifting to Path Induction (cont.)

#### Proof.

Define  $f : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p)$  be such that  $f(x, y, p) := \tilde{p}(c(x))$ , so f(x, y, p) is the end point of the lifted path. Then  $f(a, a, \operatorname{refl}_a)$  is c(a) since  $\operatorname{refl}_a$  is lifted to  $\operatorname{refl}_{c(a)}$ . Thus path induction follows.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Conclusion: Does Path Induction need a justification?

• The perspective of the homotopy type theory community allows us to look at topological/homotopical interpretations.

## Conclusion: Does Path Induction need a justification?

- The perspective of the homotopy type theory community allows us to look at topological/homotopical interpretations.
- When considering path induction, we should look at this perspective seriously.

## Conclusion: Does Path Induction need a justification?

- The perspective of the homotopy type theory community allows us to look at topological/homotopical interpretations.
- When considering path induction, we should look at this perspective seriously.
- If there is a π : ∏<sub>x,y:A</sub>∏<sub>p:x=y</sub> C(x, y, p) → A that satisfies the path lifting property, then path induction holds.

## Conclusion: Does Path Induction need a justification?

- The perspective of the homotopy type theory community allows us to look at topological/homotopical interpretations.
- When considering path induction, we should look at this perspective seriously.
- If there is a π : ∏<sub>x,y:A</sub>∏<sub>p:x=y</sub> C(x, y, p) → A that satisfies the path lifting property, then path induction holds.
- Thus path induction does not need an external philosophical justification.

## Conclusion: Does Path Induction need a justification?

- The perspective of the homotopy type theory community allows us to look at topological/homotopical interpretations.
- When considering path induction, we should look at this perspective seriously.
- If there is a  $\pi : \prod_{x,y:A} \prod_{p:x=y} C(x, y, p) \to A$  that satisfies the path lifting property, then path induction holds.
- Thus path induction does not need an external philosophical justification.

Thank you.

- Ladyman and Presnell. 2015. "Identity in Homotopy Type Theory, Part I: The Justification of Path Induction." Philosophia Mathematica. Series III 23 (3): 386–406.
- Walsh, Patrick. 2017. "Categorical Harmony and Path Induction." Review of Symbolic Logic 10 (2): 301–21.