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Introduction

@ The smash product plays a crucial role in homotopy (type)
theory
o Key property: it is symmetric monoidal
@ This ‘fact’ is useful when doing HoTT too:
o Brunerie (2016): 74(S3) = Z/2Z
e Van Doorn (2018): Cohomological spectral sequences
@ Problem: this fact has never been proved in HoTT

@ Today: A solution using a ‘new’ heuristic for reasoning about
smash products
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Smash products

The smash product of two pointed types A and B is the HIT with:

@ a basepoint x, : AA B
o for every pair (a,b) : A x B, a point

<a,b>:A/\B AVB — Ax B
e for a: A, a path push;a: (a,xg) = *a l - l
e for b: B, a path push, b : (x4, b) = %, 1— AAB

@ a coherence pushj, : push; x4 = push, xg
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The pentagon

The smash product is associative. We use
aag.c:(AANB)AC =5 AA(B A C) to denote the associator.
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The pentagon

The smash product is associative. We use
aag,c: (AANB)AC = AN (B A C) to denote the associator.

@ The ‘impossible’ pentagon axiom for A:

(AANB)AC)AD
aA,B,c/\ID/ w;c,o
(AAN(BAC)AD (AAB)A(CAD)
aA,B/\C,Dl laA,B,C/\D

AN((BANC)AD) AN (BA(CAD))

1aNag,c,p
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The pentagon

@ Why is it so hard to verify?

@ Proving it amounts to constructing a homotopy
(x:((AAB)AC)AD) = fx=gx

for the pentagonators f and g.
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Induction hell

t(x s ((AA-B) A-C)AD) - fx=gx

Pf ={10

pf («,d)={1
pf((-,c},d}:{}z

pf ({{a,b),c),d)={1

pf ({pushpai,c),d)=1{1%

pf ({push,bi,c),d})={2
Df((DUShlrij,C),d}={
Df(Dusm-i,d):{}T

pf (pushy{a,b)i,d)={1318
pf ( pushy (pushya i) i,d)={1}
pf { pushy (push, bJ)l,d}={}10
pf { pushy (push, 1 3) k , d ) ={ 11
pf { push, c i ,d)={ }12

pf { push, 13 ,d}=1{}3

pf (push; » 1) = { }14

pf (pushy {( + , ¢} 1) = { 115

pf (pushy ({a,b),c)i)={1316

pf (push; { pushja j , c ) i) = { 117

pf (pushy { push, b j , c } i) = { }18

pf (pushy { push, 3 k , c} 1) = { }19

pf (push; (push; « 11) 1) = { }20

pf (pushy (pushy (a, b)) 1) = {321
pf (pushy (push (push; a k) 3) 1) = { }22

pf (pushy (pushy (push, b k) 3) 1) = { 323
pf (pushy (push; (push, 1 k) j) 1) = { }24
pf (pushy (push, b j) i) = { }25

pf (pushy (push;, k j) 1) = { }26

pf (push. b 1) = { }27

pf (push, 1 3) = { }28
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@ Need: a better way to deal with equalities of functions
f:N\A —B

To check f = g for f,g : AN B — C, the coherence for push,, is
automatic.
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Induction hell

fir(x: ((AA-B) A-C)AD) — Ffx=gx

Df ={10

pf (+,d)={ 1
Df((-,c} d)={1
Df(((a,b) c),d)=1{233
pf((push|a1.,c) d)=1{ 14
pf({push, bi,c),d)={135
pf ({push, 13 ,c),d)={16
pf (pushy « 1 ,d)={ 37

pf (pushj{a,b)i,d)={138
pf { pushy (pushja j) i ,d})=1{1239
pf ( pushy (push, b 3) 1, d ) = { }10
pf ( push (push, 1 3) k , d )} ={ 311

pf {push, ci,d)={ }2
pf (push, 13, d)={1}13

pf (push; « 1) = { }14

pf (pushy { + , ¢} 1) = { }15

pf (pushy {{a,b),c)i)={1s6

pf (pushy { pushja j , c ) i) = { }a7

pf (pushy { push, b j , c ) i) = { }18

pf (pushy { push, j k , c} i) = { }19

pf (push; (push; = 11) 1) = { }20

pf (pushy (push; (a , b} 3) 1) = { }21
pf (pushy (push; (push; a k) j) 1) = { }22
pf (push; (push; (push, b k) 3) 1) = { 223
pf (pushy (pushy (push, 1 k) ) 1) = { }24
pf (push; (push, b 3) 1) = { }25

pf (pushy (pushi, k ) 1) = { 326

pf (push, b i) = { }27

pf (push, 1 j) = { 328
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Induction hell

pf : (x ¢ ((AA-B) A-C)AD) — fx=gx pf(push «1)=1{ 114

pf « = { }0 pf (pushy { «+ , c )} i) = { }15
pf(-,d)=({ 1 pf (pushy {{a,b),c)i) =136
pf ({+,c),d)=(12 pf (pushy { pushya j , c) i) ={ }17
pf ({{a,b),c),d)={1313 £ h h b i) = 18
of ((push ai.c) d)={3a pf (pushy { push, b j , c) i) ={}
pf{{push b1, c),d)=115 of (push; (push - :) i) = { 328

pf (pushy (pushy (a, b)) 1) = {}21
pfépusm(-i,d}}:{}?') pf (push, (push; (push; a k) j) i) = { }22
pf {pushy {a,b)i,d)={138 £ h h hobk) ) i) =
of { pushy (pushy a §) 1, d )= 1 39 pf (push; (push; (push, )i ={13123
pf { push; (push, b 3) 1, d ) = { }10

pf (push; (push, b 3) 1) = { }25

pf {push, ci,d)={ }2
pf (push, b i) = { }27
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Induction hell

pf : (x ¢ ((AA-B) A-C)AD) — fx=gx pf(push «1)=1{ 114

pf « = { }0 pf (pushy { «+ , c )} i) = { }15
pf(-,d)=({ 1 pf (pushy {{a,b),c)i) =136
pf ({+,c),d)=(12 pf (pushy { pushya j , c) i) ={ }17
pf ({{a,b),c),d)={1313 £ h h b i) = 18
of ((push ai.c) d)={3a pf (pushy { push, b j , c) i) ={}
pf{{push bi,c),d)=113s of (push; (push - :) i) = { 328

pf (pushy (pushy (a, b)) 1) = {}21
Pf§DU5h|<-i,d}}={}7) pf (push; (push; (push; a k) j) 1) = { }22
pf {pushy {a,b)i,d)={138 £ h h hobk) ) i) =
of { pushy (pushy a §) 1, d )= 1 39 pf (push; (push; (push, )i ={13123
pf { push; (push, b 3) 1, d ) = { }10

pf (push; (push, b 3) 1) = { }25

pf {push, ci,d)={ }2
pf (push, b i) = { }27

e Still: 22 (highly non-trivial) cases left...
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Interlude: homogeneous types

A pointed type A is homogeneous if for every a : A, there is an
automorphism e, : A~ A such that e;x4 = a

@ All (pointed) path spaces are homogeneous.

Lemma 4 (Evan's Trick)

Let f,g : A —, B be two pointed functions with B homogeneous.
If there is a homotopy (x : A) — f x = g x, then f = g as pointed
functions.
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Interlude: homogeneous types

Lemma 5 (Evans's trick 2.0)

Let f,g: AN B —, C be two pointed functions with C
homogeneous. If there is a homotopy

((X7Y) tAX B) - f<Xay> :g<X7y>

then f = g (as pointed functions)

Usmg the adjunction (AA B —, C) ~ A —, (B — C).

@ Dream: Apply the trick to pentagon.
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Interlude: homogeneous types

Lemma 5 (Evans's trick 2.0)

Let f,g: AN B —, C be two pointed functions with C
homogeneous. If there is a homotopy

(x,y) : Ax B) = fi{x,y) = g{x,y)

then f = g (as pointed functions)

Using the adjunction (AA B —, C) ~ A —, (B —, C). O

o Dream:-Apply-the trick to-pentagon-

@ Nightmare: We can’t (the codomain is not homogeneous).
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The heuristic

@ Fortunately, there is still hope: loop spaces are homogeneous.
Let's ‘make them appear’ in the proof of the pentagon.

Let f,g: AANB —, C. A homotopy
h:((a,b): Ax B) — f(a,b) = g(a, b) induces two functions

° Lh:A—>QC
o RhB—)QC

@ For instance, Ly a is defined by the composition

-1
* aps(push; a)~1
*C f > f*/\ rl 12) > f<a,*B>

%

> g% *
apg(push, a) T EXA *g ¢

g(a,*B)
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@ Fortunately, there is still hope: loop spaces are homogeneous.
Let's ‘make them appear’ in the proof of the pentagon.

Let f,g: AAB —, C. A homotopy
h:((a,b): Ax B) — f(a,b) = g(a, b) induces two functions

° LhA—)QC
o RhB—)QC

If L, = const (L, 4,) and Ry, = CONSt(R, «z)/ then f = g
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The heuristic

o Fortunately, there is still hope: loop spaces are homogeneous.
Let's ‘make them appear’ in the proof of the pentagon.

Let f,g: AAB —, C. A homotopy
h:((a,b): Ax B) — f(a,b) = g(a, b) induces two functions

o LhA—)QC
o RhB—)QC

@ The point: applying this construction to the pentagonators
f,e :((AANB)ANC)AD — AN (B A(C A D)), the functions
Ly is of type

Lh: (AANB)ANC = Q(AAN(BA(CAD)))
Homogeneous codomain!
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o We want to prove that Ly, is constant. This is precisely where
the explosion of complexity happens in a naive proof...

@ ...but thanks to our set up: enough to show that

<,,,7,

AxBxC L (ANB) A C M5 QAN (B A(CA D))

is constant.

@ Amounts to checking the actions of f and g on push|(a, b, c),
but no further coherences!

e In particular: no nestled push; and push, constructors.
o Only 13-eases 1 case to check
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o By iterating the argument, we may use L, and Rj to construct
equalities f = g for any f, g : \;., Ai — B.

@ Heuristic: We only need to construct a homotopy
h:f(xy,...,xn) = g(x1,...,%n) and show that it is
compatible with aps and ap, on single applications of push,
and push,.

@ Number of cases: 622 O(2n)
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Reaping the fruits

The smash product satisfies the pentagon identity.

After applying of the heuristic, the remaining coherences are easily
verified by hand. OJ
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Reaping the fruits

The smash product satisfies the pentagon identity.

After applying of the heuristic, the remaining coherences are easily
verified by hand. O

The smash product is symmetric monoidal with the booleans as
unit.
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Thanks for listening!
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\

: {((X :Xn) © (Nicn Ai) X An) {Lh<X17 ... Xp—1) = const

%II

— (X, xp) = g()’( n) Rh xp, = const

| T

hy - {((>_<>Xn—1) C(Nien1Ai) X An-1) {Lhn<X1, ... Xp—2) = const

— F(X, Xp—1, Xn) = (X, Xn—1, Xn) Rhp, Xn—1 = const

LT

|

f(x1,...,Xn) = &{X1,...,Xn)
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