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Introduction

The smash product plays a crucial role in homotopy (type)
theory
Key property: it is symmetric monoidal
This ‘fact’ is useful when doing HoTT too:

Brunerie (2016): π4(S3) ∼= Z/2Z
Van Doorn (2018): Cohomological spectral sequences

Problem: this fact has never been proved in HoTT
Today: A solution using a ‘new’ heuristic for reasoning about
smash products
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Smash products

Definition 1
The smash product of two pointed types A and B is the HIT with:

a basepoint ⋆∧ : A ∧ B

for every pair (a, b) : A× B , a point
⟨a, b⟩ : A ∧ B

for a : A, a path pushl a : ⟨a, ⋆B⟩ = ⋆∧

for b : B , a path pushr b : ⟨⋆A, b⟩ = ⋆∧

a coherence pushlr : pushl ⋆A = pushr ⋆B
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Smash products

Definition 1
The smash product of two pointed types A and B is the HIT with:

a basepoint ⋆∧ : A ∧ B

for every pair (a, b) : A× B , a point
⟨a, b⟩ : A ∧ B

for a : A, a path pushl a : ⟨a, ⋆B⟩ = ⋆∧

for b : B , a path pushr b : ⟨⋆A, b⟩ = ⋆∧

a coherence pushlr : pushl ⋆A = pushr ⋆B

A ∨ B A× B

1 A ∧ B

⌟
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The pentagon

Fact
The smash product is associative. We use
αA,B,C : (A ∧ B) ∧ C

∼−→ A ∧ (B ∧ C ) to denote the associator.

The ‘impossible’ pentagon axiom for ∧:
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The pentagon

Fact
The smash product is associative. We use
αA,B,C : (A ∧ B) ∧ C

∼−→ A ∧ (B ∧ C ) to denote the associator.

The ‘impossible’ pentagon axiom for ∧:

((A ∧ B) ∧ C ) ∧ D

(A ∧ (B ∧ C )) ∧ D (A ∧ B) ∧ (C ∧ D)

A ∧ ((B ∧ C ) ∧ D) A ∧ (B ∧ (C ∧ D))

αA,B,C∧1D

αA,B∧C ,D

αA∧B,C ,D

αA,B,C∧D

1A∧αB,C ,D
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The pentagon

Why is it so hard to verify?
Proving it amounts to constructing a homotopy

(x : ((A ∧ B) ∧ C ) ∧ D) → f x = g x

for the pentagonators f and g .
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Induction hell

Axel Ljungström Smash Products Are Symmetric Monoidal in HoTT



A first step

Need: a better way to deal with equalities of functions
f :

∧
i Ai → B

Lemma 2
To check f = g for f , g : A ∧ B → C , the coherence for pushlr is
automatic.
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Induction hell

Still: 22 (highly non-trivial) cases left...
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Interlude: homogeneous types

Definition 3
A pointed type A is homogeneous if for every a : A, there is an
automorphism ea : A ≃ A such that ea ⋆A = a

All (pointed) path spaces are homogeneous.

Lemma 4 (Evan’s Trick)

Let f , g : A →⋆ B be two pointed functions with B homogeneous.
If there is a homotopy (x : A) → f x = g x , then f = g as pointed
functions.
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Interlude: homogeneous types

Lemma 5 (Evans’s trick 2.0)

Let f , g : A ∧ B →⋆ C be two pointed functions with C
homogeneous. If there is a homotopy

((x , y) : A× B) → f ⟨x , y⟩ = g⟨x , y⟩

then f = g (as pointed functions)

Proof.
Using the adjunction (A ∧ B →⋆ C ) ≃ A →⋆ (B →⋆ C ).

Dream: Apply the trick to pentagon.

Dream: Apply the trick to pentagon.
Nightmare: We can’t (the codomain is not homogeneous).
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The heuristic

Fortunately, there is still hope: loop spaces are homogeneous.
Let’s ‘make them appear’ in the proof of the pentagon.

Definition 6
Let f , g : A ∧ B →⋆ C . A homotopy
h : ((a, b) : A× B) → f ⟨a, b⟩ = g⟨a, b⟩ induces two functions

Lh : A → ΩC

Rh : B → ΩC

For instance, Lh a is defined by the composition

⋆C f ⋆∧ f ⟨a, ⋆B⟩

g⟨a, ⋆B⟩ g⋆∧ ⋆C

⋆−1
f apf (pushl a)

−1

h(a,⋆B)

apg (pushl a)
⋆g
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The heuristic

Fortunately, there is still hope: loop spaces are homogeneous.
Let’s ‘make them appear’ in the proof of the pentagon.

Definition 6
Let f , g : A ∧ B →⋆ C . A homotopy
h : ((a, b) : A× B) → f ⟨a, b⟩ = g⟨a, b⟩ induces two functions

Lh : A → ΩC

Rh : B → ΩC

Lemma 7
If Lh = const(Lh ⋆A) and Rh = const(Rh ⋆B), then f = g
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The heuristic

Fortunately, there is still hope: loop spaces are homogeneous.
Let’s ‘make them appear’ in the proof of the pentagon.

Definition 6
Let f , g : A ∧ B →⋆ C . A homotopy
h : ((a, b) : A× B) → f ⟨a, b⟩ = g⟨a, b⟩ induces two functions

Lh : A → ΩC

Rh : B → ΩC

The point: applying this construction to the pentagonators
f , g : ((A ∧ B) ∧ C ) ∧ D → A ∧ (B ∧ (C ∧ D)), the functions
Lh is of type

Lh : (A ∧ B) ∧ C → Ω(A ∧ (B ∧ (C ∧ D)))

Homogeneous codomain!
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The heuristic

We want to prove that Lh is constant. This is precisely where
the explosion of complexity happens in a naive proof...
...but thanks to our set up: enough to show that

A× B × C
⟨−,−,−⟩−−−−−→ (A ∧ B) ∧ C

Lh−→ Ω(A ∧ (B ∧ (C ∧ D)))

is constant.
Amounts to checking the actions of f and g on pushl⟨a, b, c⟩,
but no further coherences!

In particular: no nestled pushl and pushr constructors.
Only 13 cases 1 case to check

Axel Ljungström Smash Products Are Symmetric Monoidal in HoTT



The heuristic

By iterating the argument, we may use Lh and Rh to construct
equalities f = g for any f , g :

∧
i≤n Ai → B .

Heuristic: We only need to construct a homotopy
h : f ⟨x1, . . . , xn⟩ = g⟨x1, . . . , xn⟩ and show that it is
compatible with apf and apg on single applications of pushl
and pushr.
Number of cases: O(2n) O(2n)
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Reaping the fruits

Theorem 8
The smash product satisfies the pentagon identity.

Proof.
After applying of the heuristic, the remaining coherences are easily
verified by hand.
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Reaping the fruits

Theorem 8
The smash product satisfies the pentagon identity.

Proof.
After applying of the heuristic, the remaining coherences are easily
verified by hand.

Theorem 9
The smash product is symmetric monoidal with the booleans as
unit.
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Thanks

Thanks for listening!
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Frame Title

f = g

h :

{
((x̄ , xn) : (

∧
i<n Ai )× An)

→ f ⟨x̄ , xn⟩ = g⟨x̄ , xn⟩

{
Lh⟨x1, . . . xn−1⟩ = const
Rh xn = const

hn :

{
((x̄ , xn−1) : (

∧
i<n−1 Ai )× An−1)

→ f ⟨x̄ , xn−1, xn⟩ = g⟨x̄ , xn−1, xn⟩

{
Lhn⟨x1, . . . xn−2⟩ = const
Rhn xn−1 = const

...
...

f ⟨x1, . . . , xn⟩ = g⟨x1, . . . , xn⟩
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