Computing Cohomology Rings in Cubical Agda

<u>Thomas Lamiaux</u>, Axel Ljungström, Anders Mörtberg HoTT/UF 2023

1. Cohomology

1. Cohomology

1.1 Cohomology Groups

Klein Bottle vs Mickey Mouse

Question :

• How to prove that two topological spaces are not isomorphic ?

Question :

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

Question :

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

$$\exists i \in \mathbb{N}, \ H^{i}(X) \not\cong H^{i}(Y) \implies X \not\cong Y$$

$\mathsf{Question}:$

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

 To each topological space X, we associate a sequence of abelian groups (Hⁱ(X))_{i:ℕ}, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, \, H^{i}(X) \not\cong H^{i}(Y) \implies X \not\cong Y$$

• The invariants are supposed to be "easy" to compute, and "nice" groups : \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$

Cohomology Groups

$$\exists i \in \mathbb{N}, \, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
K ²	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	Z	1	Z	1	\mathbb{Z}	1
$\mathbb{S}^2\bigvee\mathbb{S}^1\bigvee\mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, \, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
K ²	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2\bigvee\mathbb{S}^1\bigvee\mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} imes \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, \, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
K ²	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	Z	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^2\bigvee\mathbb{S}^1\bigvee\mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, \, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
K ²	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	\mathbb{Z}	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	\mathbb{Z}	1	Z	1	\mathbb{Z}	1
$\mathbb{S}^2\bigvee\mathbb{S}^1\bigvee\mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} \times \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology Groups

$$\exists i \in \mathbb{N}, \, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
K ²	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
\mathbb{S}^1	\mathbb{Z}	\mathbb{Z}	1	1	1	1
$\mathbb{R}P^2$	Z	1	$\mathbb{Z}/2\mathbb{Z}$	1	1	1
$\mathbb{C}P^2$	Z	1	Z	1	\mathbb{Z}	1
$\mathbb{S}^2\bigvee\mathbb{S}^1\bigvee\mathbb{S}^1$	\mathbb{Z}	$\mathbb{Z} imes \mathbb{Z}$	\mathbb{Z}	1	1	1

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$H^{i}(X) := \| X \longrightarrow \| \mathbb{S}^{i} \|_{i} \|_{0}$$

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$H^{i}(X) := \parallel X \longrightarrow \parallel \mathbb{S}^{i} \parallel_{i} \parallel_{0}$$

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$H^{i}(X) := \| X \longrightarrow \| \mathbb{S}^{i} \|_{i} \|_{0}$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction:
 - $\,\vartriangleright\,$ It gives a short and "more graspable" definition of cohomology
 - $\,\vartriangleright\,$ It is possible to reason about induction when studying spaces

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$H^{i}(X) := \parallel X \longrightarrow \parallel \mathbb{S}^{i} \parallel_{i} \parallel_{0}$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction:
 - $\,\vartriangleright\,$ It gives a short and "more graspable" definition of cohomology
 - $\,\vartriangleright\,$ It is possible to reason about induction when studying spaces
- Definitions are synthetic:

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition :

$$H^{i}(X) := \| X \longrightarrow \| \mathbb{S}^{i} \|_{i} \|_{0}$$

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction:
 - $\,\vartriangleright\,$ It gives a short and "more graspable" definition of cohomology
 - $\,\vartriangleright\,$ It is possible to reason about induction when studying spaces
- Definitions are synthetic:
 - \triangleright No points !
 - $\,\vartriangleright\,$ Simple and short computations of many cohomology groups
 - \triangleright Functions compute, at least in theory

1. Cohomology

1.2 Cohomology Rings

Cohomology groups are just invariants

• Some topological spaces are <u>not isomorphic</u> but they have the same cohomology groups

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	$H^3(X)$	$H^4(X)$	Else
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	\mathbb{Z}	1
$\mathbb{S}^4 \bigvee \mathbb{S}^2$	Z	1	Z	1	Z	1

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

$$\smile : H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

which turns $H^*(X):=\bigoplus_{i:\mathbb{N}}H^i(X)$ in a ring named the cohomology ring

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

$$\smile : H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

which turns $H^*(X) := \bigoplus_{i:\mathbb{N}} H^i(X)$ in a ring named the cohomology ring

• This cohomology ring is <u>one more invariant</u> :

 $H^*(X) \ncong H^*(Y) \Longrightarrow X \ncong Y$

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

$$\smile : H^i(X) \longrightarrow H^j(X) \longrightarrow H^{i+j}(X)$$

which turns $H^*(X) := \bigoplus_{i:\mathbb{N}} H^i(X)$ in a ring named the cohomology ring

• This cohomology ring is <u>one more invariant</u> :

$$H^*(X) \ncong H^*(Y) \Longrightarrow X \ncong Y$$

X	$H^0(X)$	$H^1(X)$	$H^2(X)$	Else	$H^*(X)$
$\mathbb{C}P^2$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X]/\langle X^3 angle$
$\mathbb{S}^4 \bigvee \mathbb{S}^2$	\mathbb{Z}	1	\mathbb{Z}	1	$\mathbb{Z}[X,Y]/\langle X^2,XY,Y^2\rangle$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues ?

1. Build a easy to work with \bigoplus to define graded rings

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues ?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues ?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues ?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda \Longrightarrow <u>no tactics</u> !

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Issues ?

- 1. Build a easy to work with \bigoplus to define graded rings
- 2. Find a practical notion of multivariate polynomials
- 3. Prove the different ring isomorphisms

Constraints ?

- We are working in cubical agda \implies <u>no tactics</u> !
- We want to be constructive

2. Building the direct sum and graded rings

2. Building the direct sum and graded rings

2.1 Adapting the classical direct sum

The classical direct sum

$$\bigoplus_{i:I} G_i := \{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, g_n = 0 \in G_n \}$$

The classical direct sum

$$\bigoplus_{i:I} G_i := \{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, g_n = 0 \in G_n \}$$

A general definition ?

$$\sum_{\substack{f:\prod_{i:J}:G_i}} \|\sum_{\substack{J: \text{ subset}(I)\\J \text{ finite}}} \prod_{\substack{i:J\\i\notin J}} f(i) \equiv \mathbf{0}_i \|$$

The classical direct sum

$$\bigoplus_{i:I} G_i := \{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, g_n = 0 \in G_n \}$$

A general definition ?

$$\sum_{\substack{f:\prod_{i:J}:G_i}}\|\sum_{\substack{J: \, \mathrm{subset}(J)\\J \, \mathrm{finite}}}\prod_{\substack{i:J\\i \notin J}}f(i) \equiv \mathbf{0}_i\|$$

A solution when I is \mathbb{N}

$$\bigoplus_{n:\mathbb{N}}^{\mathrm{Fun}} G_n := \sum_{f:\prod_{n:\mathbb{N}}:G_n} \|\sum_{k:\mathbb{N}} \prod_{\substack{k:\mathbb{N}\\k < i}} f(i) \equiv 0_i \|$$

Building Graded Rings ?

Abelian group structure

Given $f, g : \bigoplus_{n:\mathbb{N}}^{\text{Fun}} G_n$, an abelian group structure can be defined pointwise:

$$(f+g)(n)=f(n)+_ng(n)$$

Building Graded Rings ?

Abelian group structure

Given $f, g : \bigoplus_{n:\mathbb{N}}^{\text{Fun}} G_n$, an abelian group structure can be defined pointwise:

$$(f+g)(n) = f(n) +_n g(n)$$

A product ?

Given $\star : G_i \to G_j \to G_{i+j}$ over $(\mathbb{N}, 0, +)$, we would like to define :

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n-i)$$

but it doesn't type check because $G_{i+(n-i)} \neq G_n$ definitionally

Building Graded Rings ?

Abelian group structure

Given $f, g : \bigoplus_{n:\mathbb{N}}^{\text{Fun}} G_n$, an abelian group structure can be defined pointwise:

$$(f+g)(n)=f(n)+_ng(n)$$

A product ?

Given $\star: G_i \to G_j \to G_{i+j}$ over $(\mathbb{N}, 0, +)$, we would like to define :

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n-i)$$

but it doesn't type check because $G_{i+(n-i)} \neq G_n$ definitionally

Transports are needed

$$(f \times g)(n) = \sum_{i=0}^{n} \uparrow_{i}^{n} (f(i) \star g(n-i))$$

10/20
Proving the properties ?

Proving associativity is however complicated, it unfolds to proving :

$$(f \times (g \times h))(n) = \sum_{i=0}^{n} \uparrow_{i}^{n} (f(i) \star (g \times h)(n-i))$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} \left(f(i) \star \left(\sum_{j=0}^{n-i} \uparrow_{j}^{n-i} (g(j) \star h(n-i-j)) \right) \right) \right)$$

$$\equiv \dots$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} \left(\left(\sum_{j=0}^{i} \uparrow_{j}^{i} (f(j) \star g(i-j)) \right) \star h(n-i) \right)$$

$$= \sum_{i=0}^{n} \uparrow_{i}^{n} ((f \times g)(i) \star h(n-i))$$

$$= ((f \times g) \times h)(n)$$

2. Building the direct sum and graded rings

2.2 A quotient inductive type definition

data \oplus HIT (*I* : Type) (*G* : *I* \rightarrow AbGroup) : Type where -- Point constructors 0⊕ : ⊕HIT / G base : $(n: I) \rightarrow \langle G n \rangle \rightarrow \oplus HIT I G$ $+\oplus \qquad : \oplus \mathsf{HIT} \ I \ G \to \oplus \mathsf{HIT} \ I \ G \to \oplus \mathsf{HIT} \ I \ G$ -- Abelian group laws $+ \oplus \text{Assoc} : \forall x \ y \ z \rightarrow x + \oplus (y + \oplus z) \equiv (x + \oplus y) + \oplus z$ $+ \oplus \operatorname{Rid}$: $\forall x \to x + \oplus 0 \oplus \equiv x$ $+\oplus$ Comm : $\forall x y \rightarrow x + \oplus y \equiv y + \oplus x$ -- Morphism laws base0 \oplus : $\forall n \rightarrow$ base $n 0 \langle G n \rangle \equiv 0 \oplus$ base+ \oplus : $\forall n \times y \rightarrow base n \times + \oplus base n y \equiv base n (x + (G n) y)$ -- Set truncation trunc : isSet $(\oplus HIT I G)$

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

• To base n x, base m y, we associate base $(n + m) (x \star y)$

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

- To base n x, base m y, we associate base $(n + m) (x \star y)$
- The other cases are trivial

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

- To base n x, base m y, we associate base $(n + m) (x \star y)$
- The other cases are trivial

Proving associativity

We can again reason by triple induction :

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

- To base n x, base m y, we associate base $(n + m) (x \star y)$
- The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) $(x*(y*z)) \equiv$ base ((n+m)+k) ((x*y)*z)

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

- To base n x, base m y, we associate base $(n + m) (x \star y)$
- The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) $(x*(y*z)) \equiv$ base ((n+m)+k) ((x*y)*z)

• The other cases are trivial

Defining the product

Given a monoid (I, e, +) and $\star : G_i \to G_j \to G_{i+j}$, we can define a product $_ \times _$ by double recursion :

- To base n x, base m y, we associate base $(n + m) (x \star y)$
- The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) $(x\star(y\star z)) \equiv$ base ((n+m)+k) $((x\star y)\star z)$

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

Multivariate polynomials

• We can define
$$R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$$

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n]:=\bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n]:= \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

Pros for our purpose

• $R[X_1,...,X_n]$ and $H^*(X)$ are define in the same way

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- $R[X_1,...,X_n]$ and $H^*(X)$ are define in the same way
- This is a direct definition of multivariate polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- $R[X_1,...,X_n]$ and $H^*(X)$ are define in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- $R[X_1,...,X_n]$ and $H^*(X)$ are define in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 - \triangleright Elements are generated by 0, aX^n , +

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i:\mathbb{N}}^{\mathrm{HIT}} R$
- We can even just define $R[X_1,...,X_n] := \bigoplus_{i:\mathbb{N}^n}^{\mathrm{HIT}} R$

- $R[X_1,...,X_n]$ and $H^*(X)$ are define in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 - \triangleright Elements are generated by 0, aX^n , +
 - \triangleright The product is basically generated by $aX^n \times bX^m = abX^{n+m}$

An application of the SIP

An application of the SIP

$$\operatorname{Rings} := \sum_{R:\operatorname{RawRings}} \operatorname{isRing}(R)$$

Transporting the properties

- 1. Prove that the raw rings of $\bigoplus^{\rm HIT}$ and $\bigoplus^{\rm Fun}$ are equal
- 2. Transport the ring properties of $\bigoplus^{\rm HIT}$ to $\bigoplus^{\rm Fun}$

An application of the SIP

$$\operatorname{Rings} := \sum_{R:\operatorname{RawRings}} \operatorname{isRing}(R)$$

Transporting the properties

- 1. Prove that the raw rings of $\bigoplus^{\rm HIT}$ and $\bigoplus^{\rm Fun}$ are equal
- 2. Transport the ring properties of $\bigoplus^{\rm HIT}$ to $\bigoplus^{\rm Fun}$

Structural Identity Principle

• By the structural identity principle, it suffices to prove that the raw ring structures are isomorphic as raw rings i.e. as "rings".

3. Proving the isomorphisms ?

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

A method

1. We build a function $\psi : \mathbb{Z}[X, Y] \longrightarrow H^*(\mathbb{K}^2)$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

- 1. We build a function $\psi : \mathbb{Z}[X, Y] \longrightarrow H^*(\mathbb{K}^2)$
- 2. Prove that ψ is a ring morphism

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

- 1. We build a function $\psi : \mathbb{Z}[X, Y] \longrightarrow H^*(\mathbb{K}^2)$
- 2. Prove that ψ is a ring morphism
- 3. Get a ring morphism $\mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \longrightarrow H^*(\mathbb{K}^2)$ by proving it cancels on $X^2, XY, 2Y, Y^2$

Objective ?

Prove ring isomorphisms of the form :

$$H^*(\mathbb{K}^2) := \bigoplus_{i:\mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle$$

- 1. We build a function $\psi : \mathbb{Z}[X, Y] \longrightarrow H^*(\mathbb{K}^2)$
- 2. Prove that ψ is a ring morphism
- 3. Get a ring morphism $\mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \longrightarrow H^*(\mathbb{K}^2)$ by proving it cancels on $X^2, XY, 2Y, Y^2$
- 4. Build an inverse $H^*(\mathbb{K}^2) \longrightarrow \mathbb{Z}[X,Y]/\langle X^2,XY,2Y,Y^2 \rangle$

The method in practice

Thanks to the data structure :

• Building the functions is very direct by induction

The method in practice

Thanks to the data structure :

- Building the functions is very direct by induction
- \bullet Proving ψ is a ring morphism unfolds to proving

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

i.e. studying the cup product

The method in practice

Thanks to the data structure :

- Building the functions is very direct by induction
- \bullet Proving ψ is a ring morphism unfolds to proving

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

i.e. studying the cup product

• ψ cancels on X^2 , XY, 2Y, Y^2 by definition

Caracterise the cup product

We need to prove that:

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

Caracterise the cup product

We need to prove that:

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

For the Klein bottle \mathbb{K}^2

• Writing $\phi_1:\mathbb{Z}\cong H^1(\mathbb{K}^2)$ it unfolds to proving :

$$\phi_1(1) \smile \phi_1(1) = 0$$

Caracterise the cup product

We need to prove that:

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

For the Klein bottle \mathbb{K}^2

• Writing $\phi_1:\mathbb{Z}\cong H^1(\mathbb{K}^2)$ it unfolds to proving :

$$\phi_1(1) \smile \phi_1(1) = 0$$

Computing the result ?

 I stopped the computation of \(\phi_1(1)\) after 10 minutes of computation and 3gb of ram !

Caracterise the cup product

We need to prove that:

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \smile \psi(X^kY^l)$$

For the Klein bottle \mathbb{K}^2

• Writing $\phi_1:\mathbb{Z}\cong H^1(\mathbb{K}^2)$ it unfolds to proving :

$$\phi_1(1) \smile \phi_1(1) = 0$$

Computing the result ?

- I stopped the computation of \(\phi_1(1)\) after 10 minutes of computation and 3gb of ram !
- And we actually want to compute $\phi_1(1) \smile \phi_1(1)$

Work with an alternative generator α

1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$

Work with an alternative generator α

- 1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$
 - \triangleright Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
Work with an alternative generator α

- 1. Define a nicer generator $\alpha: H^1(\mathbb{K}^2)$
 - \triangleright Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 - \triangleright Conclude that $\alpha = \phi_1(1)$ for free

Work with an alternative generator α

- 1. Define a nicer generator $\alpha: H^1(\mathbb{K}^2)$
 - \triangleright Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 - \triangleright Conclude that $\alpha = \phi_1(1)$ for free
- 2. Prove that $\alpha \smile \alpha = 0$ (10 lines of agda)

Work with an alternative generator α

- 1. Define a nicer generator $\alpha: H^1(\mathbb{K}^2)$
 - \triangleright Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 - \triangleright Conclude that $\alpha = \phi_1(1)$ for free
- 2. Prove that $\alpha \smile \alpha = 0$ (10 lines of agda)

Compute $\alpha \smile \alpha$? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram (note that α is just 8 lines when normalized...)

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - \triangleright A good example of how data structures matters
 - \triangleright A fun application of the structural identity principle

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - $\,\vartriangleright\,$ A good example of how data structures matters
 - $\,\vartriangleright\,$ A fun application of the structural identity principle
- A general idea how to characterise cohomology rings

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - \triangleright A good example of how data structures matters
 - \triangleright A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - $\,\vartriangleright\,$ A good example of how data structures matters
 - \triangleright A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

More in the CPP's paper

• Computation of the \mathbb{Z} cohomology ring of : \mathbb{S}^n , $\mathbb{C}P^2$, $\mathbb{S}^4 \bigvee \mathbb{S}^2$, \mathbb{K}^2 , $\mathbb{R}P^2 \bigvee \mathbb{S}^1$

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - $\,\vartriangleright\,$ A good example of how data structures matters
 - $\,\vartriangleright\,$ A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

More in the CPP's paper

- Computation of the \mathbb{Z} cohomology ring of : \mathbb{S}^n , $\mathbb{C}P^2$, $\mathbb{S}^4 \bigvee \mathbb{S}^2$, \mathbb{K}^2 , $\mathbb{R}P^2 \bigvee \mathbb{S}^1$
- Computation of the $\underline{\mathbb{Z}/2\mathbb{Z}}$ cohomology ring of : $\mathbb{K}^2, \ \mathbb{R}P^2 \bigvee \mathbb{S}^1$