Computing Cohomology Rings in Cubical Agda

Thomas Lamiaux, Axel Ljungström, Anders Mörtberg
HoTT/UF 2023
1. Cohomology
1. Cohomology

1.1 Cohomology Groups
Klein Bottle vs Mickey Mouse

Question:

- How to prove that two topological spaces are not isomorphic?

Klein Bottle K^2

"Mickey Mouse space" $S^2 \vee S^1 \vee S^1$
Cohomology Groups

Question:

- How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups
Cohomology Groups

Question:

• How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups:

• To each topological space X, we associate a sequence of abelian groups $(H^i(X))_{i : \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, \quad H^i(X) \not\cong H^i(Y) \implies X \not\cong Y$$

• The invariants are supposed to be “easy” to compute, and “nice” groups: \mathbb{Z}, $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$.
Question:

• How to prove that two topological spaces are not isomorphic?

The idea behind cohomology groups:

• To each topological space X, we associate a sequence of abelian groups $(H^i(X))_{i \in \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, \ H^i(X) \not\cong H^i(Y) \implies X \not\cong Y$$

• The invariants are supposed to be "easy" to compute, and "nice" groups: \mathbb{Z}, $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$
To each topological space \(X \), associate a sequence of abelian group \((H^i(X))_{i \in \mathbb{N}} \), named the cohomology groups, such that:

\[
\exists i \in \mathbb{N}, \ H^i(X) \not\cong H^i(Y) \implies X \not\cong Y
\]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(H^0(X))</th>
<th>(H^1(X))</th>
<th>(H^2(X))</th>
<th>(H^3(X))</th>
<th>(H^4(X))</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{K}^2)</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{S}^1)</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{R}P^2)</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z}/2\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{C}P^2)</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z})</td>
<td>1</td>
</tr>
<tr>
<td>(\mathbb{S}^2 \lor \mathbb{S}^1 \lor \mathbb{S}^1)</td>
<td>(\mathbb{Z})</td>
<td>(\mathbb{Z} \times \mathbb{Z})</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cohomology Groups

• To each topological space X, associate a sequence of abelian group $(H^i(X))_{i \in \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, H^i(X) \ncong H^i(Y) \implies X \ncong Y$$

<table>
<thead>
<tr>
<th>X</th>
<th>$H^0(X)$</th>
<th>$H^1(X)$</th>
<th>$H^2(X)$</th>
<th>$H^3(X)$</th>
<th>$H^4(X)$</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{K}^2</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\mathbb{S}^1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{R}P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{C}P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{S}^2 \vee \mathbb{S}^1 \vee \mathbb{S}^1$</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z} \times \mathbb{Z}$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cohomology Groups

- To each topological space X, associate a sequence of abelian group $(H^i(X))_{i \in \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, H^i(X) \not\cong H^i(Y) \implies X \not\cong Y$$

<table>
<thead>
<tr>
<th>X</th>
<th>$H^0(X)$</th>
<th>$H^1(X)$</th>
<th>$H^2(X)$</th>
<th>$H^3(X)$</th>
<th>$H^4(X)$</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^2</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S^1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{R}P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$C P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
<tr>
<td>$S^2 \vee S^1 \vee S^1$</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z} \times \mathbb{Z}$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Cohomology Groups

- To each topological space X, associate a sequence of abelian group $(H^i(X))_{i \in \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, \ H^i(X) \not\cong H^i(Y) \implies X \not\cong Y$$

<table>
<thead>
<tr>
<th>X</th>
<th>$H^0(X)$</th>
<th>$H^1(X)$</th>
<th>$H^2(X)$</th>
<th>$H^3(X)$</th>
<th>$H^4(X)$</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^2</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S^1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RP^2</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CP^2</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
<tr>
<td>$S^2 \cup S^1 \cup S^1$</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z} \times \mathbb{Z}$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
To each topological space X, associate a sequence of abelian group $(H^i(X))_{i \in \mathbb{N}}$, named the cohomology groups, such that:

$$\exists i \in \mathbb{N}, H^i(X) \not\cong H^i(Y) \implies X \not\cong Y$$

<table>
<thead>
<tr>
<th>X</th>
<th>$H^0(X)$</th>
<th>$H^1(X)$</th>
<th>$H^2(X)$</th>
<th>$H^3(X)$</th>
<th>$H^4(X)$</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{K}^2</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>\mathbb{S}^1</td>
<td>\mathbb{Z}</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{R}P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{C}P^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
<tr>
<td>$\mathbb{S}^2 \cup \mathbb{S}^1 \cup \mathbb{S}^1$</td>
<td>\mathbb{Z}</td>
<td>$\mathbb{Z} \times \mathbb{Z}$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

\[H^i(X) := \| X \rightarrow \| S^i \| \|_0 \]
Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

\[H^i(X) := \| X \rightarrow \| S^i \| ; \| 0 \|

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction:
Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

\[H^i(X) := \| X \to \|S^i\|; \|_0 \]

The benefit of synthetic mathematics in HoTT

- Spaces, functions... can be defined by induction:
 - It gives a short and "more graspable" definition of cohomology
 - It is possible to reason about induction when studying spaces
Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

\[H^i(X) := \| X \rightarrow \| S^i \|; \| 0 \|

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:
 ▶ It gives a short and "more graspable" definition of cohomology
 ▶ It is possible to reason about induction when studying spaces

• Definitions are synthetic:
Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where cohomology groups have a remarkably short definition:

\[H^i(X) := \| X \to \| S^i \| ; \| 0 \| \]

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:
 ▶ It gives a short and "more graspable" definition of cohomology
 ▶ It is possible to reason about induction when studying spaces

• Definitions are synthetic:
 ▶ No points!
 ▶ Simple and short computations of many cohomology groups
 ▶ Functions compute, at least in theory
1. Cohomology

1.2 Cohomology Rings
Cohomology groups are not enough!

Cohomology groups are just invariants

- Some topological spaces are not isomorphic but they have the same cohomology groups

<table>
<thead>
<tr>
<th>X</th>
<th>$H^0(X)$</th>
<th>$H^1(X)$</th>
<th>$H^2(X)$</th>
<th>$H^3(X)$</th>
<th>$H^4(X)$</th>
<th>Else</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP^2</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
<tr>
<td>$S^4 \vee S^2$</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
<td>\mathbb{Z}</td>
<td>1</td>
</tr>
</tbody>
</table>
The Cohomology Ring

The cup product and the cohomology ring

- There is a graded operation on the groups, the cup product:

 \[\smile : H^i(X) \to H^j(X) \to H^{i+j}(X) \]

which turns \(H^*(X) := \bigoplus_{i \in \mathbb{N}} H^i(X) \) in a ring named the cohomology ring.
The cup product and the cohomology ring

- There is a graded operation on the groups, the cup product:
 \[\smile : H^i(X) \rightarrow H^j(X) \rightarrow H^{i+j}(X) \]
 which turns \(H^*(X) := \bigoplus_{i \in \mathbb{N}} H^i(X) \) in a ring named the cohomology ring.

- This cohomology ring is one more invariant:
 \[H^*(X) \not\cong H^*(Y) \implies X \not\cong Y \]
The cup product and the cohomology ring

- There is a graded operation on the groups, the **cup product**:
 \[\smile : H^i(X) \rightarrow H^j(X) \rightarrow H^{i+j}(X) \]

which turns \(H^*(X) := \bigoplus_{i \in \mathbb{N}} H^i(X) \) in a ring named the **cohomology ring**

- This cohomology ring is **one more invariant**:
 \[H^*(X) \not\cong H^*(Y) \implies X \not\cong Y \]

<table>
<thead>
<tr>
<th>(X)</th>
<th>(H^0(X))</th>
<th>(H^1(X))</th>
<th>(H^2(X))</th>
<th>Else</th>
<th>(H^*(X))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{C}P^2)</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z}[X]/\langle X^3 \rangle)</td>
</tr>
<tr>
<td>(S^4 \vee S^2)</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>(\mathbb{Z}[X, Y]/\langle X^2, XY, Y^2 \rangle)</td>
</tr>
</tbody>
</table>
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i: \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/(X^2, XY, 2Y, Y^2) \]
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[H^*(K^2) := \bigoplus_{i: \mathbb{N}} H^i(K^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

Issues?

1. Build a easy to work with \(\bigoplus \) to define graded rings
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i: \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

Issues?

1. Build an easy to work with \(\bigoplus \) to define graded rings
2. Find a practical notion of multivariate polynomials

Constraints?

- We are working in cubical agda \(\Rightarrow \) no tactics
- We want to be constructive
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[
H^*(K^2) := \bigoplus_{i: \mathbb{N}} H^i(K^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle
\]

Issues?

1. Build a easy to work with \bigoplus to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[
H^*(K^2) := \bigoplus_{i: \mathbb{N}} H^i(K^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle
\]

Issues?

1. Build a easy to work with \(\bigoplus \) to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms

Constraints?

- We are working in cubical agda \(\implies \) no tactics!
What do we need to solve?

Objective?

Prove ring isomorphisms of the form:

\[H^*(K^2) := \bigoplus_{i: \mathbb{N}} H^i(K^2) \cong \mathbb{Z}[X,Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

Issues?

1. Build a easy to work with \(\bigoplus \) to define graded rings
2. Find a practical notion of multivariate polynomials
3. Prove the different ring isomorphisms

Constraints?

• We are working in cubical agda \(\Longrightarrow \) no tactics !
• We want to be constructive
2. Building the direct sum and graded rings
2. Building the direct sum and graded rings

2.1 Adapting the classical direct sum
Adapting the classical direct sum

The classical direct sum

\[\bigoplus_{i:I} G_i := \{(g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \ g_n = 0 \in G_n\} \]
Adapting the classical direct sum

The classical direct sum

\[\bigoplus_{i \in I} G_i := \left\{ (g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \ g_n = 0 \in G_n \right\} \]

A general definition?

\[\sum_{f : \prod_{i \in I} G_i} \| \sum_{J : \text{subset}(I)} \prod_{i \in I \setminus J} f(i) \equiv 0_i \| \]

\[\text{if } (i_j) \equiv 0_i \| \]
Adapting the classical direct sum

The classical direct sum

\[\bigoplus_{i \in I} G_i := \{(g_i)_{i \in I} \mid \exists \text{ finite } J \subset I, \forall n \notin J, \ g_n = 0 \in G_n\} \]

A general definition?

\[\sum_{f: \prod_{i \in I} G_i} \parallel \sum_{J: \text{subset}(I)} \prod_{i \in I, i \notin J} f(i) \equiv 0_i \parallel \]

A solution when \(I \) is \(\mathbb{N} \)

\[\bigoplus_{n: \mathbb{N}} G_n := \sum_{f: \prod_{n: \mathbb{N}} G_n} \parallel \sum_{k: \mathbb{N}} \prod_{k: \mathbb{N}, k < i} f(i) \equiv 0_i \parallel \]
Abelian group structure

Given $f, g : \bigoplus_{n : \mathbb{N}} G_n$, an abelian group structure can be defined pointwise:

$$(f + g)(n) = f(n) +_n g(n)$$
Abelian group structure

Given $f, g : \bigoplus_{n : \mathbb{N}}^\text{Fun} G_n$, an abelian group structure can be defined pointwise:

$$(f + g)(n) = f(n) +_n g(n)$$

A product ?

Given $\star : G_i \to G_j \to G_{i+j}$ over $(\mathbb{N}, 0, +)$, we would like to define:

$$(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n - i)$$

but it doesn’t type check because $G_{i+(n-i)} \neq G_n$ definitionally
Building Graded Rings

Abelian group structure

Given \(f, g : \bigoplus_{n: \mathbb{N}}^\text{Fun} G_n \), an abelian group structure can be defined pointwise:

\[
(f + g)(n) = f(n) +_n g(n)
\]

A product?

Given \(\star : G_i \to G_j \to G_{i+j} \) over \((\mathbb{N}, 0, +)\), we would like to define:

\[
(f \times g)(n) = \sum_{i=0}^{n} f(i) \star g(n - i)
\]

but it doesn’t type check because \(G_{i+(n-i)} \neq G_n \) definitionally

Transports are needed

\[
(f \times g)(n) = \sum_{i=0}^{n} \uparrow_i^n (f(i) \star g(n - i))
\]
Proving the properties?

Proving associativity is however complicated, it unfolds to proving:

\[(f \times (g \times h))(n) = \sum_{i=0}^{n} \uparrow_i^n (f(i) \star (g \times h)(n - i))\]

\[= \sum_{i=0}^{n} \uparrow_i^n \left(f(i) \star \left(\sum_{j=0}^{n-i} \uparrow_{j}^{n-i} (g(j) \star h(n - i - j)) \right) \right)\]

\[\equiv ...\]

\[= \sum_{i=0}^{n} \uparrow_i^n \left(\left(\sum_{j=0}^{i} \uparrow_{j}^{i} (f(j) \star g(i - j)) \right) \star h(n - i) \right)\]

\[= \sum_{i=0}^{n} \uparrow_i^n (\left(f \times g \right)(i) \star h(n - i))\]

\[= \left((f \times g) \times h \right)(n)\]
2. Building the direct sum and graded rings

2.2 A quotient inductive type definition
A quotient inductive type definition

data ⊕HIT (I : Type) (G : I → AbGroup) : Type where
 -- Point constructors
 0⊕ : ⊕HIT I G
 base : (n : I) → ⟨ G n ⟩ → ⊕HIT I G
 ++ : ⊕HIT I G → ⊕HIT I G → ⊕HIT I G
 -- Abelian group laws
 ⊕Assoc : ∀ x y z → x ++ (y ++ z) ≡ (x ++ y) ++ z
 ⊕Rid : ∀ x → x ++ 0⊕ ≡ x
 ⊕Comm : ∀ x y → x ++ y ≡ y ++ x
 -- Morphism laws
 base0⊕ : ∀ n → base n 0⟨ G n ⟩ ≡ 0⊕
 base+_⊕ : ∀ n x y → base n x ++ base n y ≡ base n (x ++ ⟨ G n ⟩ y)
 -- Set truncation
 trunc : isSet (⊕HIT I G)
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \rightarrow G_j \rightarrow G_{i+j}\), we can define a product \(_\times _\) by double recursion:

• To base \(n \times m\), we associate base \((n + m) \times (x \star y)\).
• The other cases are trivial.

Proving associativity

We can again reason by triple induction:

• The base case unfolds to proving:
 \[\text{base}(n + (m + k) \times (x \star (y \star z))) \equiv \text{base}((n + m) + k \times (x \star y) \star z)\]
• The other cases are trivial.

Cohomology Rings

This enables to define graded rings, and as such cohomology rings.
Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \to G_j \to G_{i+j}\), we can define a product \(_ \times _\) by double recursion:

- To base \(n \times\), base \(m \times\), we associate base \((n + m) \times (x \star y)\)

Proving associativity
We can again reason by triple induction:

- The base case unfolds to proving:
 \[
 \text{base} \left(n + (m + k) \right) \times (x \star (y \star z)) \equiv \text{base} \left((n + m) + k \right) \times (x \star (y \star z))
 \]
 - The other cases are trivial

Cohomology Rings
This enables to define graded ring, and as such cohomology rings.
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \rightarrow G_j \rightarrow G_{i+j}\), we can define a product \(_ \times _\) by double recursion:

- To base \(n x\), base \(m y\), we associate base \((n + m) (x \star y)\)
- The other cases are trivial
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \rightarrow G_j \rightarrow G_{i+j}\), we can define a product \(_\times_\) by double recursion:

- To base \(n \times\), base \(m \times y\), we associate base \((n + m) (x \star y)\)
- The other cases are trivial

Proving associativity

We can again reason by triple induction:

• The base case unfolds to proving:

 base \((n + (m + k)) \times (y \star z)\) \equiv base \((n + m) (x \star y)\) \star z

• The other cases are trivial

Cohomology Rings
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \to G_j \to G_{i+j}\), we can define a product \(_ \times _\) by double recursion:

- To base \(n \times\), base \(m \times\), we associate base \((n + m) \times (x \star y)\)
- The other cases are trivial

Proving associativity

We can again reason by triple induction:

- The base case unfolds to proving:

 \[
 \text{base } (n + (m + k)) \ (x \star (y \star z)) \equiv \text{base } ((n + m) + k) \ ((x \star y) \star z)
 \]
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \rightarrow G_j \rightarrow G_{i+j}\), we can define a product \(_\star _\) by double recursion:

- To base \(n x\), base \(m y\), we associate base \((n + m)(x \star y)\)
- The other cases are trivial

Proving associativity

We can again reason by triple induction:

- The base case unfolds to proving:

 \[
 \text{base } (n+(m+k))(x\star(y\star z)) \equiv \text{base } ((n+m)+k)((x\star y)\star z)
 \]
- The other cases are trivial

Cohomology Rings

This enables to define graded ring, and as such cohomology rings.
Defining a graded ring

Defining the product

Given a monoid \((I, e, +)\) and \(\star : G_i \rightarrow G_j \rightarrow G_{i+j}\), we can define a product \(_ \times _\) by double recursion:

- To base \(n \times\), base \(m \ y\), we associate base \((n + m) (x \star y)\)
- The other cases are trivial

Proving associativity

We can again reason by triple induction:

- The base case unfolds to proving:
 \[
 \text{base } (n + (m + k)) (x \star (y \star z)) \equiv \text{base } ((n + m) + k) ((x \star y) \star z)
 \]
- The other cases are trivial

Cohomology Rings

- This enables to define graded ring, and as such cohomology rings.
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i \in \mathbb{N}}^{\text{HIT}} R$

Pros for our purpose

- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
- Elements are generated by 0, aX^n, $+$
- The product is basically generated by $aX^n \times bX^m = abX^{n+m}$
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i: \mathbb{N}}^{\text{HIT}} R$
- We can even just define $R[X_1, ..., X_n] := \bigoplus_{i: \mathbb{N}^n}^{\text{HIT}} R$
The HIT polynomials

Multivariate polynomials

- We can define \(R[X] := \bigoplus_{i: \mathbb{N}}^\text{HIT} R \)
- We can even just define \(R[X_1, ..., X_n] := \bigoplus_{i: \mathbb{N}^n}^\text{HIT} R \)

Pros for our purpose

- \(R[X_1, ..., X_n] \) and \(H^*(X) \) are defined in the same way
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i: \mathbb{N}}^{\text{HIT}} R$
- We can even just define $R[X_1, ..., X_n] := \bigoplus_{i: \mathbb{N}^n}^{\text{HIT}} R$

Pros for our purpose

- $R[X_1, ..., X_n]$ and $H^*(X)$ are defined in the same way
- This is a direct definition of multivariate polynomials
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i \in \mathbb{N}} \text{HIT}^i R$
- We can even just define $R[X_1, ..., X_n] := \bigoplus_{i \in \mathbb{N}^n} \text{HIT}^i R$

Pros for our purpose

- $R[X_1, ..., X_n]$ and $H^*(X)$ are defined in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i: \mathbb{N}} \text{HIT} \; R$
- We can even just define $R[X_1, \ldots, X_n] := \bigoplus_{i: \mathbb{N}^n} \text{HIT} \; R$

Pros for our purpose

- $R[X_1, \ldots, X_n]$ and $H^*(X)$ are define in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 ▷ Elements are generated by $0, aX^n, +$
The HIT polynomials

Multivariate polynomials

- We can define $R[X] := \bigoplus_{i : \mathbb{N}} R$
- We can even just define $R[X_1, ..., X_n] := \bigoplus_{i : \mathbb{N}^n} R$

Pros for our purpose

- $R[X_1, ..., X_n]$ and $H^*(X)$ are defined in the same way
- This is a direct definition of multivariate polynomials
- The elements and the product are intuitive and easy to work with
 - Elements are generated by $0, aX^n, +$
 - The product is basically generated by $aX^n \times bX^m = abX^{n+m}$
An application of the SIP

Raw Rings and Rings

\[
\text{Rings} := \sum_{R: \text{RawRings}} \text{isRing}(R)
\]
An application of the SIP

Raw Rings and Rings

\[
\text{Rings} := \sum_{R: \text{RawRings}} \text{isRing}(R)
\]

Transporting the properties

1. Prove that the raw rings of \(\bigoplus^\text{HIT}\) and \(\bigoplus^\text{Fun}\) are equal
2. Transport the ring properties of \(\bigoplus^\text{HIT}\) to \(\bigoplus^\text{Fun}\)
An application of the SIP

Raw Rings and Rings

\[\text{Rings} := \sum_{R: \text{RawRings}} \text{isRing}(R) \]

Transporting the properties

1. Prove that the raw rings of \(\bigoplus^\text{HIT} \) and \(\bigoplus^\text{Fun} \) are equal
2. Transport the ring properties of \(\bigoplus^\text{HIT} \) to \(\bigoplus^\text{Fun} \)

Structural Identity Principle

- By the structural identity principle, it suffices to prove that the raw ring structures are isomorphic as raw rings i.e. as "rings".
3. Proving the isomorphisms?
A General Method

Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i \in \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]
A General Method

Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i \in \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

A method
Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i: \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

A method

1. We build a function \(\psi : \mathbb{Z}[X, Y] \rightarrow H^*(\mathbb{K}^2) \)
A General Method

Objective?

Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i \in \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

A method

1. We build a function \(\psi : \mathbb{Z}[X, Y] \rightarrow H^*(\mathbb{K}^2) \)
2. Prove that \(\psi \) is a ring morphism
A General Method

Objective?
Prove ring isomorphisms of the form:

\[H^*(\mathbb{K}^2) := \bigoplus_{i \in \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \]

A method
1. We build a function \(\psi : \mathbb{Z}[X, Y] \to H^*(\mathbb{K}^2) \)
2. Prove that \(\psi \) is a ring morphism
3. Get a ring morphism \(\mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \to H^*(\mathbb{K}^2) \) by proving it cancels on \(X^2, XY, 2Y, Y^2 \)
Objective?

Prove ring isomorphisms of the form:

\[
H^*(\mathbb{K}^2) := \bigoplus_{i \in \mathbb{N}} H^i(\mathbb{K}^2) \cong \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle
\]

A method

1. We build a function \(\psi : \mathbb{Z}[X, Y] \rightarrow H^*(\mathbb{K}^2) \)
2. Prove that \(\psi \) is a ring morphism
3. Get a ring morphism \(\mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \rightarrow H^*(\mathbb{K}^2) \)
 by proving it cancels on \(X^2, XY, 2Y, Y^2 \)
4. Build an inverse \(H^*(\mathbb{K}^2) \rightarrow \mathbb{Z}[X, Y]/\langle X^2, XY, 2Y, Y^2 \rangle \)
The benefit of the data structure

The method in practice

Thanks to the data structure:

- Building the functions is very direct by induction
The benefit of the data structure

The method in practice

Thanks to the data structure:

- Building the functions is very direct by induction
- Proving ψ is a ring morphism unfolds to proving

$$\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \cup \psi(X^kY^l)$$

i.e. studying the cup product
The benefit of the data structure

The method in practice

Thanks to the data structure:

- Building the functions is very direct by induction
- Proving ψ is a ring morphism unfolds to proving

$$
\psi(X^mY^n \times X^kY^l) \equiv \psi(X^mY^n) \cup \psi(X^kY^l)
$$

i.e. studying the cup product
- ψ cancels on $X^2, XY, 2Y, Y^2$ by definition
Using computation to characterise the cup product

We need to prove that:

\[\psi(\times) \equiv \psi(\odot) \]

For the Klein bottle

Writing \(\phi_1: \mathbb{Z} \sim H_1(K^2) \) it unfolds to proving:

\[\phi_1(1) \odot \phi_1(1) = 0 \]

Computing the result?

I stopped the computation of \(\phi_1(1) \) after 10 minutes of computation and 3gb of ram!
Caracterise the cup product

We need to prove that:

\[\psi(X^m Y^n \times X^k Y^l) \equiv \psi(X^m Y^n) \cup \psi(X^k Y^l) \]

For the Klein bottle \(\mathbb{K}^2 \)

- Writing \(\phi_1 : \mathbb{Z} \cong H^1(\mathbb{K}^2) \) it unfolds to proving:

\[\phi_1(1) \cup \phi_1(1) = 0 \]
Using computation to characterise the cup product

We need to prove that:

\[\psi(X^m Y^n \times X^k Y^l) \equiv \psi(X^m Y^n) \cup \psi(X^k Y^l) \]

For the Klein bottle \(\mathbb{K}^2 \)

- Writing \(\phi_1 : \mathbb{Z} \cong H^1(\mathbb{K}^2) \) it unfolds to proving:

\[\phi_1(1) \cup \phi_1(1) = 0 \]

Computing the result?

- I stopped the computation of \(\phi_1(1) \) after 10 minutes of computation and 3gb of ram!
Using computation to characterise the cup product

Caracterise the cup product

We need to prove that:

\[\psi(X^m Y^n \times X^k Y^l) \equiv \psi(X^m Y^n) \cup \psi(X^k Y^l) \]

For the Klein bottle \(K^2 \)

- Writing \(\phi_1 : \mathbb{Z} \cong H^1(K^2) \) it unfolds to proving:

\[\phi_1(1) \cup \phi_1(1) = 0 \]

Computing the result?

- I stopped the computation of \(\phi_1(1) \) after 10 minutes of computation and 3gb of ram!
- And we actually want to compute \(\phi_1(1) \cup \phi_1(1) \)
Using computation to characterise the cup product

Work with an alternative generator α

1. Define a nicer generator $\alpha : H^1(K^2)$

Prove that $\varphi - 1(\alpha) = 1$ by computation

Conclude that $\alpha = \varphi 1(1)$ for free

Prove that $\alpha \cdot \alpha = 0$ (10 lines of Agda)

Compute $\alpha \cdot \alpha$? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram (note that α is just 8 lines when normalized...)

19/20
Using computation to characterise the cup product

<table>
<thead>
<tr>
<th>Work with an alternative generator α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$</td>
</tr>
<tr>
<td>▶ Prove that $\phi_1^{-1}(\alpha) = 1$ by computation</td>
</tr>
</tbody>
</table>

I stopped the computation after 2 minutes and 3gb of ram (note that α is just 8 lines when normalized...)
Using computation to characterise the cup product

Work with an alternative generator α

1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$
 - Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 - Conclude that $\alpha = \phi_1(1)$ for free
Using computation to characterise the cup product

Work with an alternative generator α

1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$
 ▷ Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 ▷ Conclude that $\alpha = \phi_1(1)$ for free

2. Prove that $\alpha \smile \alpha = 0$ (10 lines of agda)
Using computation to characterise the cup product

Work with an alternative generator α

1. Define a nicer generator $\alpha : H^1(\mathbb{K}^2)$
 ▶ Prove that $\phi_1^{-1}(\alpha) = 1$ by computation
 ▶ Conclude that $\alpha = \phi_1(1)$ for free

2. Prove that $\alpha \smile \alpha = 0$ (10 lines of agda)

Compute $\alpha \smile \alpha$? Nice try!

- I stopped the computation after 2 minutes and 3gb of ram
 (note that α is just 8 lines when normalized...)
Conclusion
Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, \ldots, X_n]$
 ▶ A good example of how data structures matters
 ▶ A fun application of the structural identity principle
Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, \ldots, X_n]$
 - A good example of how data structures matters
 - A fun application of the structural identity principle
- A general idea how to characterise cohomology rings

More in the CPP's paper

- Computation of the \mathbb{Z} cohomology ring of: S^n, CP^2, S^4, W_S^2, K_2, RP^2, W_S^1
Conclusion

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, \ldots, X_n]$
 - A good example of how data structures matters
 - A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

More in the CPP's paper

- Computation of the \mathbb{Z} cohomology ring of: S^n, CP^2, S^4, W, K^2, RP^2, W
- Computation of the $\mathbb{Z}/2\mathbb{Z}$ cohomology ring of: K^2, RP^2, W
Conclusion

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, ..., X_n]$
 - A good example of how data structures matters
 - A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

More in the CPP’s paper

- Computation of the \mathbb{Z} cohomology ring of:
 S^n, $\mathbb{C}P^2$, $S^4 \vee S^2$, K^2, $\mathbb{R}P^2 \vee S^1$
Conclusion

Achievement in the talk

- Practical definitions of $H^*(X)$ and $R[X_1, \ldots, X_n]$
 - A good example of how data structures matters
 - A fun application of the structural identity principle
- A general idea how to characterise cohomology rings
- An example on the limitations and possibilities of computation

More in the CPP’s paper

- Computation of the \mathbb{Z} cohomology ring of:
 $S^n, \mathbb{C}P^2, S^4 \vee S^2, K^2, \mathbb{R}P^2 \vee S^1$
- Computation of the $\mathbb{Z}/2\mathbb{Z}$ cohomology ring of:
 $K^2, \mathbb{R}P^2 \vee S^1$