
Computing Cohomology Rings in
Cubical Agda

Thomas Lamiaux, Axel Ljungström, Anders Mörtberg

HoTT/UF 2023

1/20

1. Cohomology

1. Cohomology

1.1 Cohomology Groups

Klein Bottle vs Mickey Mouse

Question :

• How to prove that two topological spaces are not isomorphic ?

Klein Bottle K2
"Mickey Mouse space"

S2 ∨ S1 ∨ S1

2/20

Cohomology Groups

Question :

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

• To each topological space X , we associate a sequence of abelian
groups (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

• The invariants are supposed to be "easy" to compute, and "nice"
groups : Z, Z× Z, Z/2Z

3/20

Cohomology Groups

Question :

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

• To each topological space X , we associate a sequence of abelian
groups (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

• The invariants are supposed to be "easy" to compute, and "nice"
groups : Z, Z× Z, Z/2Z

3/20

Cohomology Groups

Question :

• How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

• To each topological space X , we associate a sequence of abelian
groups (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

• The invariants are supposed to be "easy" to compute, and "nice"
groups : Z, Z× Z, Z/2Z

3/20

Cohomology Groups

Cohomology Groups

• To each topological space X , associate a sequence of abelian
group (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
K2 Z Z Z/2Z 1 1 1
S1 Z Z 1 1 1 1
RP2 Z 1 Z/2Z 1 1 1
CP2 Z 1 Z 1 Z 1

S2 ∨ S1 ∨ S1 Z Z× Z Z 1 1 1

4/20

Cohomology Groups

Cohomology Groups

• To each topological space X , associate a sequence of abelian
group (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
K2 Z Z Z/2Z 1 1 1
S1 Z Z 1 1 1 1
RP2 Z 1 Z/2Z 1 1 1
CP2 Z 1 Z 1 Z 1

S2 ∨ S1 ∨ S1 Z Z× Z Z 1 1 1

4/20

Cohomology Groups

Cohomology Groups

• To each topological space X , associate a sequence of abelian
group (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
K2 Z Z Z/2Z 1 1 1
S1 Z Z 1 1 1 1
RP2 Z 1 Z/2Z 1 1 1
CP2 Z 1 Z 1 Z 1

S2 ∨ S1 ∨ S1 Z Z× Z Z 1 1 1

4/20

Cohomology Groups

Cohomology Groups

• To each topological space X , associate a sequence of abelian
group (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
K2 Z Z Z/2Z 1 1 1
S1 Z Z 1 1 1 1
RP2 Z 1 Z/2Z 1 1 1
CP2 Z 1 Z 1 Z 1

S2 ∨ S1 ∨ S1 Z Z× Z Z 1 1 1

4/20

Cohomology Groups

Cohomology Groups

• To each topological space X , associate a sequence of abelian
group (H i (X))i :N, named the cohomology groups, such that:

∃i ∈ N, H i (X) ̸∼= H i (Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
K2 Z Z Z/2Z 1 1 1
S1 Z Z 1 1 1 1
RP2 Z 1 Z/2Z 1 1 1
CP2 Z 1 Z 1 Z 1

S2 ∨ S1 ∨ S1 Z Z× Z Z 1 1 1

4/20

Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

H i (X) := ∥ X −→ ∥Si∥i ∥0

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

▷ It gives a short and "more graspable" definition of cohomology
▷ It is possible to reason about induction when studying spaces

• Definitions are synthetic:

▷ No points !
▷ Simple and short computations of many cohomology groups
▷ Functions compute, at least in theory

5/20

Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

H i (X) := ∥ X −→ ∥Si∥i ∥0

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

▷ It gives a short and "more graspable" definition of cohomology
▷ It is possible to reason about induction when studying spaces

• Definitions are synthetic:

▷ No points !
▷ Simple and short computations of many cohomology groups
▷ Functions compute, at least in theory

5/20

Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

H i (X) := ∥ X −→ ∥Si∥i ∥0

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

▷ It gives a short and "more graspable" definition of cohomology
▷ It is possible to reason about induction when studying spaces

• Definitions are synthetic:

▷ No points !
▷ Simple and short computations of many cohomology groups
▷ Functions compute, at least in theory

5/20

Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

H i (X) := ∥ X −→ ∥Si∥i ∥0

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

▷ It gives a short and "more graspable" definition of cohomology
▷ It is possible to reason about induction when studying spaces

• Definitions are synthetic:

▷ No points !
▷ Simple and short computations of many cohomology groups
▷ Functions compute, at least in theory

5/20

Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

H i (X) := ∥ X −→ ∥Si∥i ∥0

The benefit of synthetic mathematics in HoTT

• Spaces, functions... can be defined by induction:

▷ It gives a short and "more graspable" definition of cohomology
▷ It is possible to reason about induction when studying spaces

• Definitions are synthetic:

▷ No points !
▷ Simple and short computations of many cohomology groups
▷ Functions compute, at least in theory

5/20

1. Cohomology

1.2 Cohomology Rings

Cohomology groups are not enough !

Cohomology groups are just invariants

• Some topological spaces are not isomorphic but they have the
same cohomology groups

X H0(X) H1(X) H2(X) H3(X) H4(X) Else
CP2 Z 1 Z 1 Z 1

S4 ∨ S2 Z 1 Z 1 Z 1

6/20

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

⌣ : H i (X) −→ H j(X) −→ H i+j(X)

which turns H∗(X) :=
⊕

i :N H i (X) in a ring named the
cohomology ring

• This cohomology ring is one more invariant :

H∗(X) ̸∼= H∗(Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) Else H∗(X)

CP2 Z 1 Z 1 Z[X]/⟨X 3⟩
S4 ∨S2 Z 1 Z 1 Z[X ,Y]/⟨X 2,XY ,Y 2⟩

7/20

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

⌣ : H i (X) −→ H j(X) −→ H i+j(X)

which turns H∗(X) :=
⊕

i :N H i (X) in a ring named the
cohomology ring

• This cohomology ring is one more invariant :

H∗(X) ̸∼= H∗(Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) Else H∗(X)

CP2 Z 1 Z 1 Z[X]/⟨X 3⟩
S4 ∨S2 Z 1 Z 1 Z[X ,Y]/⟨X 2,XY ,Y 2⟩

7/20

The Cohomology Ring

The cup product and the comology ring

• There is a graded operation on the groups, the cup product:

⌣ : H i (X) −→ H j(X) −→ H i+j(X)

which turns H∗(X) :=
⊕

i :N H i (X) in a ring named the
cohomology ring

• This cohomology ring is one more invariant :

H∗(X) ̸∼= H∗(Y) =⇒ X ̸∼= Y

X H0(X) H1(X) H2(X) Else H∗(X)

CP2 Z 1 Z 1 Z[X]/⟨X 3⟩
S4 ∨S2 Z 1 Z 1 Z[X ,Y]/⟨X 2,XY ,Y 2⟩

7/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

What do we need to solve ?

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

Issues ?

1. Build a easy to work with
⊕

to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

• We are working in cubical agda =⇒ no tactics !

• We want to be constructive

8/20

2. Building the direct sum and
graded rings

2. Building the direct sum and
graded rings

2.1 Adapting the classical direct sum

Adapting the classical direct sum

The classical direct sum⊕
i :I

Gi := {(gi)i∈I | ∃ finite J ⊂ I ,∀n /∈ J, gn = 0 ∈ Gn}

A general definition ?∑
f :
∏

i :I :Gi

∥
∑

J : subset(I)
J finite

∏
i :I
i /∈J

f (i) ≡ 0i∥

A solution when I is N

Fun⊕
n:N

Gn :=
∑

f :
∏

n:N:Gn

∥
∑
k:N

∏
k:N
k<i

f (i) ≡ 0i∥

9/20

Adapting the classical direct sum

The classical direct sum⊕
i :I

Gi := {(gi)i∈I | ∃ finite J ⊂ I ,∀n /∈ J, gn = 0 ∈ Gn}

A general definition ?∑
f :
∏

i :I :Gi

∥
∑

J : subset(I)
J finite

∏
i :I
i /∈J

f (i) ≡ 0i∥

A solution when I is N

Fun⊕
n:N

Gn :=
∑

f :
∏

n:N:Gn

∥
∑
k:N

∏
k:N
k<i

f (i) ≡ 0i∥

9/20

Adapting the classical direct sum

The classical direct sum⊕
i :I

Gi := {(gi)i∈I | ∃ finite J ⊂ I ,∀n /∈ J, gn = 0 ∈ Gn}

A general definition ?∑
f :
∏

i :I :Gi

∥
∑

J : subset(I)
J finite

∏
i :I
i /∈J

f (i) ≡ 0i∥

A solution when I is N

Fun⊕
n:N

Gn :=
∑

f :
∏

n:N:Gn

∥
∑
k:N

∏
k:N
k<i

f (i) ≡ 0i∥

9/20

Building Graded Rings ?

Abelian group structure

Given f , g : ⊕Fun
n:N Gn, an abelian group structure can be defined

pointwise:
(f + g)(n) = f (n) +n g(n)

A product ?

Given ⋆ : Gi → Gj → Gi+j over (N, 0,+), we would like to define :

(f × g)(n) =
n∑

i=0

f (i) ⋆ g(n − i)

but it doesn’t type check because Gi+(n−i) ̸= Gn definitionally

Transports are needed

(f × g)(n) =
n∑

i=0

↑ni (f (i) ⋆ g(n − i))

10/20

Building Graded Rings ?

Abelian group structure

Given f , g : ⊕Fun
n:N Gn, an abelian group structure can be defined

pointwise:
(f + g)(n) = f (n) +n g(n)

A product ?

Given ⋆ : Gi → Gj → Gi+j over (N, 0,+), we would like to define :

(f × g)(n) =
n∑

i=0

f (i) ⋆ g(n − i)

but it doesn’t type check because Gi+(n−i) ̸= Gn definitionally

Transports are needed

(f × g)(n) =
n∑

i=0

↑ni (f (i) ⋆ g(n − i))

10/20

Building Graded Rings ?

Abelian group structure

Given f , g : ⊕Fun
n:N Gn, an abelian group structure can be defined

pointwise:
(f + g)(n) = f (n) +n g(n)

A product ?

Given ⋆ : Gi → Gj → Gi+j over (N, 0,+), we would like to define :

(f × g)(n) =
n∑

i=0

f (i) ⋆ g(n − i)

but it doesn’t type check because Gi+(n−i) ̸= Gn definitionally

Transports are needed

(f × g)(n) =
n∑

i=0

↑ni (f (i) ⋆ g(n − i))

10/20

Proving the properties ?

Proving associativity is however complicated, it unfolds to proving :

(f × (g × h))(n) =
n∑

i=0

↑ni (f (i) ⋆ (g × h)(n − i))

=
n∑

i=0

↑ni

f (i) ⋆

n−i∑
j=0

↑n−i
j (g(j) ⋆ h(n − i − j))


≡ ...

=
n∑

i=0

↑ni

 i∑
j=0

↑ij(f (j) ⋆ g(i − j))

 ⋆ h(n − i)


=

n∑
i=0

↑ni ((f × g)(i) ⋆ h(n − i))

= ((f × g)× h)(n)

11/20

2. Building the direct sum and
graded rings

2.2 A quotient inductive type definition

A quotient inductive type definition

data ⊕HIT (I : Type) (G : I → AbGroup) : Type where
–- Point constructors
0⊕ : ⊕HIT I G
base : (n : I) → ⟨ G n ⟩ → ⊕HIT I G
+⊕ : ⊕HIT I G → ⊕HIT I G → ⊕HIT I G
–- Abelian group laws
+⊕Assoc : ∀ x y z → x +⊕ (y +⊕ z) ≡ (x +⊕ y) +⊕ z
+⊕Rid : ∀ x → x +⊕ 0⊕ ≡ x
+⊕Comm : ∀ x y → x +⊕ y ≡ y +⊕ x
–- Morphism laws
base0⊕ : ∀ n → base n 0⟨ G n ⟩ ≡ 0⊕
base+⊕ : ∀ n x y → base n x +⊕ base n y ≡ base n (x +⟨ G n ⟩ y)
–- Set truncation
trunc : isSet (⊕HIT I G)

12/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.

13/20

Defining a graded ring

Defining the product

Given a monoid (I , e,+) and ⋆ : Gi → Gj → Gi+j , we can define a
product _ × _ by double recursion :

• To base n x , base m y , we associate base (n +m) (x ⋆ y)

• The other cases are trivial

Proving associativity

We can again reason by triple induction :

• The base case unfolds to proving :

base (n+(m+k)) (x ⋆(y ⋆z)) ≡ base ((n+m)+k) ((x ⋆y)⋆z)

• The other cases are trivial

Cohomology Rings

• This enables to define graded ring, and as such cohomology rings.
13/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

The HIT polynomials

Multivariate polynomials

• We can define R[X] :=
⊕HIT

i :N R

• We can even just define R[X1, ...,Xn] :=
⊕HIT

i :Nn R

Pros for our purpose

• R[X1, ...,Xn] and H∗(X) are define in the same way

• This is a direct definition of multivariate polynomials

• The elements and the product are intuitive and easy to work with

▷ Elements are generated by 0, aX n, +

▷ The product is basically generated by aX n × bXm = abX n+m

14/20

An application of the SIP

Raw Rings and Rings

Rings :=
∑

R:RawRings

isRing(R)

Transporting the properties

1. Prove that the raw rings of
⊕HIT and

⊕Fun are equal

2. Transport the ring properties of
⊕HIT to

⊕Fun

Structural Identity Principle

• By the structural identity principle, it suffices to prove that the
raw ring structures are isomorphic as raw rings i.e. as "rings".

15/20

An application of the SIP

Raw Rings and Rings

Rings :=
∑

R:RawRings

isRing(R)

Transporting the properties

1. Prove that the raw rings of
⊕HIT and

⊕Fun are equal

2. Transport the ring properties of
⊕HIT to

⊕Fun

Structural Identity Principle

• By the structural identity principle, it suffices to prove that the
raw ring structures are isomorphic as raw rings i.e. as "rings".

15/20

An application of the SIP

Raw Rings and Rings

Rings :=
∑

R:RawRings

isRing(R)

Transporting the properties

1. Prove that the raw rings of
⊕HIT and

⊕Fun are equal

2. Transport the ring properties of
⊕HIT to

⊕Fun

Structural Identity Principle

• By the structural identity principle, it suffices to prove that the
raw ring structures are isomorphic as raw rings i.e. as "rings".

15/20

3. Proving the isomorphisms ?

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

A General Method

Objective ?

Prove ring isomorphisms of the form :

H∗(K2) :=
⊕
i :N

H i (K2) ∼= Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

A method

1. We build a function ψ : Z[X ,Y] −→ H∗(K2)

2. Prove that ψ is a ring morphism

3. Get a ring morphism Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩ −→ H∗(K2)

by proving it cancels on X 2,XY , 2Y ,Y 2

4. Build an inverse H∗(K2) −→ Z[X ,Y]/⟨X 2,XY , 2Y ,Y 2⟩

16/20

The benefit of the data structure

The method in practice

Thanks to the data structure :

• Building the functions is very direct by induction

• Proving ψ is a ring morphism unfolds to proving

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

i.e. studying the cup product

• ψ cancels on X 2, XY , 2Y , Y 2 by definition

17/20

The benefit of the data structure

The method in practice

Thanks to the data structure :

• Building the functions is very direct by induction

• Proving ψ is a ring morphism unfolds to proving

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

i.e. studying the cup product

• ψ cancels on X 2, XY , 2Y , Y 2 by definition

17/20

The benefit of the data structure

The method in practice

Thanks to the data structure :

• Building the functions is very direct by induction

• Proving ψ is a ring morphism unfolds to proving

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

i.e. studying the cup product

• ψ cancels on X 2, XY , 2Y , Y 2 by definition

17/20

Using computation to caracterise the cup product

Caracterise the cup product

We need to prove that:

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

For the Klein bottle K2

• Writing ϕ1 : Z ∼= H1(K2) it unfolds to proving :

ϕ1(1)⌣ ϕ1(1) = 0

Computing the result ?

• I stopped the computation of ϕ1(1) after 10 minutes of compu-
tation and 3gb of ram !

• And we actually want to compute ϕ1(1)⌣ ϕ1(1)

18/20

Using computation to caracterise the cup product

Caracterise the cup product

We need to prove that:

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

For the Klein bottle K2

• Writing ϕ1 : Z ∼= H1(K2) it unfolds to proving :

ϕ1(1)⌣ ϕ1(1) = 0

Computing the result ?

• I stopped the computation of ϕ1(1) after 10 minutes of compu-
tation and 3gb of ram !

• And we actually want to compute ϕ1(1)⌣ ϕ1(1)

18/20

Using computation to caracterise the cup product

Caracterise the cup product

We need to prove that:

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

For the Klein bottle K2

• Writing ϕ1 : Z ∼= H1(K2) it unfolds to proving :

ϕ1(1)⌣ ϕ1(1) = 0

Computing the result ?

• I stopped the computation of ϕ1(1) after 10 minutes of compu-
tation and 3gb of ram !

• And we actually want to compute ϕ1(1)⌣ ϕ1(1)

18/20

Using computation to caracterise the cup product

Caracterise the cup product

We need to prove that:

ψ(XmY n × X kY l) ≡ ψ(XmY n)⌣ ψ(X kY l)

For the Klein bottle K2

• Writing ϕ1 : Z ∼= H1(K2) it unfolds to proving :

ϕ1(1)⌣ ϕ1(1) = 0

Computing the result ?

• I stopped the computation of ϕ1(1) after 10 minutes of compu-
tation and 3gb of ram !

• And we actually want to compute ϕ1(1)⌣ ϕ1(1)

18/20

Using computation to caracterise the cup product

Work with an alternative generator α

1. Define a nicer generator α : H1(K2)

▷ Prove that ϕ−1
1 (α) = 1 by computation

▷ Conclude that α = ϕ1(1) for free

2. Prove that α ⌣ α = 0 (10 lines of agda)

Compute α ⌣ α ? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram
(note that α is just 8 lines when normalized...)

19/20

Using computation to caracterise the cup product

Work with an alternative generator α

1. Define a nicer generator α : H1(K2)

▷ Prove that ϕ−1
1 (α) = 1 by computation

▷ Conclude that α = ϕ1(1) for free

2. Prove that α ⌣ α = 0 (10 lines of agda)

Compute α ⌣ α ? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram
(note that α is just 8 lines when normalized...)

19/20

Using computation to caracterise the cup product

Work with an alternative generator α

1. Define a nicer generator α : H1(K2)

▷ Prove that ϕ−1
1 (α) = 1 by computation

▷ Conclude that α = ϕ1(1) for free

2. Prove that α ⌣ α = 0 (10 lines of agda)

Compute α ⌣ α ? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram
(note that α is just 8 lines when normalized...)

19/20

Using computation to caracterise the cup product

Work with an alternative generator α

1. Define a nicer generator α : H1(K2)

▷ Prove that ϕ−1
1 (α) = 1 by computation

▷ Conclude that α = ϕ1(1) for free

2. Prove that α ⌣ α = 0 (10 lines of agda)

Compute α ⌣ α ? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram
(note that α is just 8 lines when normalized...)

19/20

Using computation to caracterise the cup product

Work with an alternative generator α

1. Define a nicer generator α : H1(K2)

▷ Prove that ϕ−1
1 (α) = 1 by computation

▷ Conclude that α = ϕ1(1) for free

2. Prove that α ⌣ α = 0 (10 lines of agda)

Compute α ⌣ α ? Nice try!

• I stopped the computation after 2 minutes and 3gb of ram
(note that α is just 8 lines when normalized...)

19/20

Conclusion

Conclusion

Achievement in the talk

• Practical definitions of H∗(X) and R[X1, ...,Xn]

▷ A good example of how data structures matters
▷ A fun application of the structural identity principle

• A general idea how to characterise cohomology rings

• An example on the limitations and possibilities of computation

More in the CPP’s paper

• Computation of the Z cohomology ring of :
Sn, CP2, S4 ∨ S2, K2, RP2 ∨ S1

• Computation of the Z/2Z cohomology ring of :
K2, RP2 ∨ S1

20/20

Conclusion

Achievement in the talk

• Practical definitions of H∗(X) and R[X1, ...,Xn]

▷ A good example of how data structures matters
▷ A fun application of the structural identity principle

• A general idea how to characterise cohomology rings

• An example on the limitations and possibilities of computation

More in the CPP’s paper

• Computation of the Z cohomology ring of :
Sn, CP2, S4 ∨ S2, K2, RP2 ∨ S1

• Computation of the Z/2Z cohomology ring of :
K2, RP2 ∨ S1

20/20

Conclusion

Achievement in the talk

• Practical definitions of H∗(X) and R[X1, ...,Xn]

▷ A good example of how data structures matters
▷ A fun application of the structural identity principle

• A general idea how to characterise cohomology rings

• An example on the limitations and possibilities of computation

More in the CPP’s paper

• Computation of the Z cohomology ring of :
Sn, CP2, S4 ∨ S2, K2, RP2 ∨ S1

• Computation of the Z/2Z cohomology ring of :
K2, RP2 ∨ S1

20/20

Conclusion

Achievement in the talk

• Practical definitions of H∗(X) and R[X1, ...,Xn]

▷ A good example of how data structures matters
▷ A fun application of the structural identity principle

• A general idea how to characterise cohomology rings

• An example on the limitations and possibilities of computation

More in the CPP’s paper

• Computation of the Z cohomology ring of :
Sn, CP2, S4 ∨ S2, K2, RP2 ∨ S1

• Computation of the Z/2Z cohomology ring of :
K2, RP2 ∨ S1

20/20

Conclusion

Achievement in the talk

• Practical definitions of H∗(X) and R[X1, ...,Xn]

▷ A good example of how data structures matters
▷ A fun application of the structural identity principle

• A general idea how to characterise cohomology rings

• An example on the limitations and possibilities of computation

More in the CPP’s paper

• Computation of the Z cohomology ring of :
Sn, CP2, S4 ∨ S2, K2, RP2 ∨ S1

• Computation of the Z/2Z cohomology ring of :
K2, RP2 ∨ S1

20/20

	1. Cohomology
	1.1 Cohomology Groups
	1.2 Cohomology Rings

	2. Building the direct sum and graded rings
	2.1 Adapting the classical direct sum
	2.2 A quotient inductive type definition

	3. Proving the isomorphisms ?
	Conclusion

