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Klein Bottle vs Mickey Mouse

e How to prove that two topological spaces are not isomorphic ?
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Klein Bottle K2 2 v st i st
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Question :

e How to prove that two topological spaces are not isomorphic ?

The idea behind cohomology groups

e To each topological space X, we associate a sequence of abelian

groups (H'(X));.x, named the cohomology groups, such that:

JieN, H(X) £ H(Y) = XY

e The invariants are supposed to be "easy" to compute, and "nice"
groups : Z, Z X 7, /27
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e To each topological space X, associate a sequence of abelian

group (H(X)):.n, named the cohomology groups, such that:
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Cohomology Groups
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e To each topological space X, associate a sequence of abelian
group (H(X)):.n, named the cohomology groups, such that:

JieN, H(X) £ H(Y) = XY

X HO(X) [ HY(X) [ H3(X) | H3(X) | H*(X) | Else

r 1|
st Z Z 1 1 1 1
RP? Z 1 | zjez | 1 1 1
CP? Z 1 Z 1 Z 1
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Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

HI(X) = | X — [IS']li llo
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Working in HoTT

Cohomology groups in HoTT

We are working in synthetic mathematics, in HoTT where coho-
mology groups have a remarkably short definition :

HI(X) = | X — [IS']li llo

The benefit of synthetic mathematics in HoTT

e Spaces, functions... can be defined by induction:

> It gives a short and "more graspable" definition of cohomology
> It is possible to reason about induction when studying spaces
e Definitions are synthetic:

> No points !
> Simple and short computations of many cohomology groups

> Functions compute, at least in theory
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1.2 Cohomology Rings



Cohomology groups are not enough !

Cohomology groups are just invariants

e Some topological spaces are not isomorphic but they have the
same cohomology groups

X [ HX) [ HY(X) | H3(X) [ H3(X) | H4(X) | Else
Z 1 Z
Z 1 Z 1 Z 1

N
—
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The Cohomology Ring

The cup product and the comology ring

e There is a graded operation on the groups, the cup product:

—  H(X) — H{(X) — H™(X)

which turns H*(X) = @,yH'(X) in a ring named the
cohomology ring
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e There is a graded operation on the groups, the cup product:
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What do we need to solve ?

Prove ring isomorphisms of the form :

HY(K?) = P H'(K?) = ZIX,Y]/(X3XY,2Y,Y?)
i:N

Issues ?

1. Build a easy to work with € to define graded rings

2. Find a practical notion of multivariate polynomials

3. Prove the different ring isomorphisms

Constraints ?

e We are working in cubical agda = no tactics !

e We want to be constructive
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2. Building the direct sum and
graded rings

2.1 Adapting the classical direct sum



Adapting the classical direct sum

The classical direct sum

P G ={(g)ici | I finite JC 1,¥n ¢ J, g, =0€ G}

il
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Adapting the classical direct sum

The classical direct sum

P G ={(g)ici | I finite JC 1,¥n ¢ J, g, =0€ G}

il

A general definition ?

o > IIfty=al

f:I1;.,:Gi  J:subset(l) i/
J finite ~ 1¢J

A solution when [ is N

Fun

D= > IXIlr=oi

fIl,n:Gn kN ,l(<<Nl
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Building Graded Rings ?

Abelian group structure

Given f,g : &G, an abelian group structure can be defined

pointwise:
(f +g)(n) = f(n) +n &(n)
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Building Graded Rings ?

Abelian group structure

Given f,g : &G, an abelian group structure can be defined

(f +g)(n) = f(n) +1 &(n)

Given x : G; — G;j — Gjj over (N,0,+), we would like to define :

pointwise:

n

(f x g)(n) = f(i)»g(n—1i)

i=0

but it doesn’t type check because Gj,(,—j) # G, definitionally

Transports are needed

(f x g)(n) = Y 1/ (F(i)xg(n—1))

i=0 10/20




Proving the properties ?

Proving associativity is however complicated, it unfolds to proving :

(f x (g x h))( ZT * (g x h)(n— 1))

= ZT,-" (f(i)* (i:ﬁ’( g() * h(n—i—]) )))
i=0 j=0

=> 17 ((Zﬂ-( F(j) *g(i — ) )) * h(n— ,-))
i=0 j=0

= Zm—"((f x g)(i) * h(n — i))

= ((f x g) x h)(n)

11/20



2. Building the direct sum and
graded rings

2.2 A quotient inductive type definition



A quotient inductive type definition

data @HIT (/ : Type) (G : | — AbGroup) : Type where

-- Point constructors

0® ceHIT I G
base c(n: )= (Gn)—=aHITIG
4@ @HITIG o @HITIG 5 aHITIG

-- Abelian group laws

+PAssoc: Vxyz—=>x+® (y+®2)=(x+D y) +D z

+6Rid  Vx—= x+6 08 = x

+@Comm :Vxy > x+Dy =y +d x

-- Morphism laws

base0® :V n— base n0{ G n) =0&

base+@® :Vnxy — basenx 4@ baseny =basen(x+{(Gn)y)
-- Set truncation

trunc - isSet (@HIT 1 G)
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Defining a graded ring

Defining the product

Given a monoid (/, e,+) and x : G; = G; — Gj4;j, we can define a
product _ x _ by double recursion :
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Defining a graded ring

Defining the product

Given a monoid (/, e,+) and x : G; = G; — Gj4;j, we can define a
product _ x _ by double recursion :

e To base n x, base m y, we associate base (n+ m) (x x y)

e The other cases are trivial

| '
\

Proving associativity

We can again reason by triple induction :
e The base case unfolds to proving :
base (n+(m+k)) (xx(yxz)) = base (n+m)+k) ((x*xy)*z)

e The other cases are trivial

Cohomology Rings

| '
\

e This enables to define graded ring, and as such cohomology rings.
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The HIT polynomials

Multivariate polynomials

o We can define R[X] := @,HRI]T R
e We can even just define R[X1, ..., X,] := @ﬁi,? R

Pros for our purpose

o R[Xi,...,X,] and H*(X) are define in the same way

e This is a direct definition of multivariate polynomials

e The elements and the product are intuitive and easy to work with

> Elements are generated by 0, aX", +
> The product is basically generated by aX” x bX™ = abX"tm
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An application of the SIP

Raw Rings and Rings

Rings := Z isRing(R)

R:RawRings
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An application of the SIP

Raw Rings and Rings

Rings := Z isRing(R)

R:RawRings

Transporting the properties

1. Prove that the raw rings of @™ and @™ are equal

2. Transport the ring properties of @HIT to @Fun

Structural Identity Principle

e By the structural identity principle, it suffices to prove that the

raw ring structures are isomorphic as raw rings i.e. as "rings".
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3. Proving the isomorphisms ?




A General Method

Objective ?
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i:N
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A General Method

Prove ring isomorphisms of the form :

H'(K?) = @ H(K?) = Z[X, Y]/(X3XY,2Y,Y?)
i:N

1. We build a function % : Z[X, Y] — H*(K?)
2. Prove that %) is a ring morphism

3. Get a ring morphism Z[X, Y]/(X?,XY,2Y,Y?) — H*(K?)
by proving it cancels on X2, XY,2Y, Y?

4. Build an inverse H*(K2) — Z[X, Y]/(X?,XY,2Y, Y?)
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The benefit of the data structure

The method in practice

Thanks to the data structure :

e Building the functions is very direct by induction
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e Building the functions is very direct by induction

e Proving v is a ring morphism unfolds to proving
PXTY" x XKY!) = p(XTY") < p(XKYT)

i.e. studying the cup product
e 1) cancels on X2, XY, 2Y, Y? by definition
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Using computation to caracterise the cup product
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Using computation to caracterise the cup product

Caracterise the cup product

We need to prove that:
PXTY" x XKV = p(X™Y") — p(XKY)

For the Klein bottle K2

e Writing ¢ : Z = H'(K?) it unfolds to proving :

$1(1) — ¢1(1) =0

Computing the result ?

e | stopped the computation of ¢1(1) after 10 minutes of compu-
tation and 3gb of ram !

e And we actually want to compute ¢1(1) — ¢1(1)
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Using computation to caracterise the cup product

Work with an alternative generator o

1. Define a nicer generator o : H'(K?)

> Prove that ¢;*(a) = 1 by computation
> Conclude that a = ¢1(1) for free
2. Prove that « — o =0 (10 lines of agda)

Compute o« — « 7 Nice try!

e | stopped the computation after 2 minutes and 3gb of ram
(note that « is just 8 lines when normalized...)

19/20
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e A general idea how to characterise cohomology rings

e An example on the limitations and possibilities of computation

More in the CPP’s paper

e Computation of the Z cohomology ring of :
Sn, CP?, S*\/S?, K2, RP2\/St

e Computation of the Z/27Z cohomology ring of :
K2, RP?\/ St
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