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A brief reminder

Semi-simplicial (∆+) = Simplicial (∆) − Degeneracies

▶ Sets X0,X1,X2, . . .
▶ Face maps di : Xn → Xn−1 for any 0 ≤ i ≤ n
▶ Satisfying the semi-simplicial identity. . .

didj = dj−1di when i < j

▶ . . .And nothing more!

Straightforward to do in type theory by restricting ourselves to
h-Sets
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A brief reminder

Such a simple construction should be possible using Types instead of
h-Sets. . . right?

Problem
Define semi-simplicial types (SSTs) in HoTT

Raised during the Special Year on UF by Voevodsky and others

▶ Types in HoTT are weak ∞-groupoids
▶ Constructions are no longer set-truncated
▶ Higher coherence issues!

The semi-simplicial identity didj = dj−1di induces “higher proof
terms” that interfere with each other and need to be identified
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Illustration

Suppose we want to show that didjdk =Xn→Xn−3 dk−2dj−1di in type
theory

▶ The semi-simplicial identity is the data of a term

αi,j : didj =Xn→Xn−2 dj−1di

▶ There are two ways to compose the αi,j’s together in order to
inhabit the type

didjdk =Xn→Xn−3 dk−2dj−1di

▶ This is given by

π := αj,k · αi,k−1 · αi,j and π′ := αi,j · αi,k · αj−1,k−1

▶ We now need the data of a term βi,j,k : π = π′, and so on. . .
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Possible approaches

▶ n-Truncate (e.g. h-Sets, h-Grps, . . . )

X : ∆
op
+ → h-Level(n+ 2)

▶ For any externally fixed n, stop the construction at stage n

X0 : Type
X1 : X0 → X0 → Type
X2 :

∏
a b c : X0 X1(a, b) → X1(b, c) → X1(a, c) → Type

...

Xn :
∏

· · · → Type

▶ Add an “outer” equality which is strict (2LTT, Altenkirch,
Capriotti, Kraus)

A general solution is believed to be impossible in “plain” HoTT
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Ten years of investigations

2012–13 Special Year on UF
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2014–15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)

2015–16 2-Level Type Theory (Altenkirch, Capriotti, Kraus)

2022 MLTT + Type Streams (Kolomatskaia)

2023 Indexed + h-Sets + Parametricity (Herbelin, Ramachandra)
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Strict composition

TLCA 2015 — Warsaw, Poland

What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is
well described in the case of (strict) ω-categories, i.e. when
associativity and the exchange law hold on the nose for path
composition

▶ Ross Street. The algebra of oriented simplexes. Journal of Pure
and Applied Algebra, 49(3):283–335, 1987.

▶ Ian R. Aitchison. The geometry of oriented cubes. Macquarie
University Research Report No: 86–0082, 1986.
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n-Cubes of proofs

Our goal

Reformulate Aitchison’s constructions in type theory, representing
higher-order cubes as higher-order equality proofs

▶ Composition of n face maps corresponds to the “spine” of an
n-cube

▶ (Higher) proof terms correspond to (composition of) faces of
dimension ≥ 2

▶ The k-hemispheres are special cases of these compositions, as
sources and targets of the equalities

How to give a recursive formulation of all the compositions involved?
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3-Cube of proofs

Xn−2 Xn−3

Xn−1 Xn−2

Xn−1 Xn−2

Xn Xn−1

dk−2

dj−1

dj−1di

dk−1

dk−1

di

di

dk

di

dj

dj

βi,j,k :

Backmost︷ ︸︸ ︷
αj,k · αi,k−1 · αi,j =(

didjdk=(Xn→Xn−3)
dk−2dj−1di

) αi,j · αi,k · αj−1,k−1︸ ︷︷ ︸
Frontmost



Combinatorial structure

▶ When n ≥ 4 associativity and the exchange law are explicitly
required

▶ There are nontrivial proof terms that are not equivalent to
k-hemispheres. . .

▶ . . .But are generated by hemispheres interfering at different
levels!

Problem
How to describe the k-hemispheres?

▶ k-Hemispheres are made up of k-faces composed together in
some order (not linear a priori!)

▶ We write h±k,n for the k-hemispheres of the n-cube
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Combinatorial structure

Definition
Dn
k is the poset of increasing sequences x1 . . . xn of length n with

values 0 ≤ xi ≤ k equipped with the “pointwise” order

00

Hasse diagram of D2
2 01 11

02 12 22

Theorem
The k-hemispheres of the n-cube are described by Dk

n−k in the sense that
there is a bijection sending any h±k,n onto a linear extension of Dk

n−k
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Combinatorial structure

Dn
k has a rich structure—so does h±k,n as a result

▶ There is (essentially) one canonical choice of linear extension of
Dn
k given by

x ⪯ y ⇐⇒ (xn, x) ≤ (yn, y)

In our previous examples with D2
2 , it chooses 11 ≺ 02

▶ Dn
k can be recursively constructed with maps

d∗ : Dn
k−1 → Dn

k and R : Dn−1
k → Dn

k

Then Dn
k = d∗Dn

k−1 ⨿ RDn−1
k

▶ This construction preserves ⪯ defined above!

Observation
h±k,n has a similar recursive formula
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Extrusion of the 3-cube



Present and future work

Aitchison’s report “only” contains formulae for the k-hemispheres

ψk [n] = µψk−1[n− 1] ∪ λψk [n− 1]

ωk [n] = νωk [n− 1] ∪ µωk−1[n− 1]
...

▶ Give an explicit description of the “internal” compositions, which
have a structure different from k-hemispheres (see Appendix)

▶ Make explicit the role of parenthesizing (associativity, exchange
law, identity, . . . )

▶ Combine these results to attempt a definition of semi-simplicial
types with the coherence equations made explicit at every level
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