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HoTT+Axioms

∞-Groupoids

Schemes
“Cubical Zariski-
sheaves”

* Schemes = quasi-compact, quasi-separated schemes of finite type



Synthetic algebraic geometry
Axiom: We have a local, commutative ring 𝑅.

For a finitely presented 𝑅-algebra 𝐴, define:

Spec(𝐴) ∶≡ Hom𝑅-algebra(𝐴, 𝑅)

Axiom (synthetic quasi-coherence (SQC)):
For any finitely presented 𝑅-algebra 𝐴, the map

𝑎 ↦ (𝜑 ↦ 𝜑(𝑎)) ∶ 𝐴 ∼−→ 𝑅Spec(𝐴)

is an equivalence.

Example: Spec(𝑅[𝑋]) = 𝑅. Thus:

𝑅[𝑋] ∼−→ 𝑅𝑅

polynomials = functions !!
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Towards schemes

For 𝑓 ∶ 𝐴 define:

𝐷(𝑓) ∶≡ { 𝑥 ∶ Spec(𝐴) ∣ 𝑥(𝑓) is invertible }

For 𝐴 = 𝑅, we get open propositions:

OpenProp ∶≡ { (𝑟1 inv.) ∨ … ∨ (𝑟𝑛 inv.) ∣ 𝑟𝑖 ∶ 𝑅 }

Lemma: There is an embedding:

{ 𝐷(𝑓1) ∪ ⋯ ∪ 𝐷(𝑓𝑛) ∣ 𝑓𝑖 ∶ 𝐴 } ↪ OpenPropSpec(𝐴)

But is it an equivalence??
Yes, using Zariski-local choice!
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Zariski-local choice

Axiom (Zariski-local choice):
For every surjective 𝜋, there merely exist local sections 𝑠𝑖

𝐸

𝐷(𝑓𝑖) Spec(𝐴)
𝜋

𝑠𝑖

with 𝑓1, … , 𝑓𝑛 ∶ 𝐴 coprime.



Some more results
▶ OpenPropSpec(𝐴) ≅ {f.g. radical ideals of 𝐴}
▶ OpenProp is closed under Σ-types.
▶ All functions Spec 𝐴 → ℕ are bounded.
▶ The type of schemes is closed under Σ-types.

For 𝐴 ∶ 𝑋 → Ab, define cohomology as:

𝐻𝑛(𝑋, 𝐴) ∶≡ ∥ ∏
𝑥∶𝑋

𝐾(𝐴𝑥, 𝑛)∥
set

▶ 𝐻𝑛 coincides with Čech-Cohomology (for separated schemes).
▶ A scheme 𝑋 is affine if and only if

𝐻𝑛(𝑋, 𝑀) = 0

for all 𝑀 ∶ 𝑋 → 𝑅-Modwqc and 𝑛 > 0.
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Thank you!



Cohomology of sheaves

Let 𝑋 be a type and ℱ ∶ 𝑋 → Ab a dependent abelian group on
𝑋.

The 𝑛-th cohomology group of ℱ is

𝐻𝑛(𝑋, ℱ) ∶≡ ∥∏
𝑥∶𝑋

𝐾(ℱ𝑥, 𝑛)∥
0

Properties:
The 𝐻𝑛(𝑋, ℱ) are all abelian groups.
Functoriality, covariant in ℱ, contravariant in 𝑋.
Some long exact sequence for coefficients.
We have a Mayer-Vietoris-Lemma and more generally
correspondence with Čech-Cohomology, for nice enough spaces.
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Zariski-Choice and Cohomology

Let 𝑋 = Spec(𝐴) and 𝑀 ∶ 𝑋 → 𝑅-Mod such that
((𝑥 ∶ 𝐷(𝑓)) → 𝑀𝑥) = ((𝑥 ∶ 𝑋) → 𝑀)𝑓 , then

𝐻1(𝑋, 𝑀) = 0

Proof: Let |𝑇 | ∶ 𝐻1(𝑋, 𝑀) ≡ ‖(𝑥 ∶ 𝑋) → 𝐾(𝑀𝑥, 1)‖0 and from
that (𝑥 ∶ 𝑋) → ‖𝑇𝑥 = 𝑀𝑥‖. Our third axiom, Zariski-local
choice, merely gives us coprime 𝑓1, … , 𝑓𝑛 ∶ 𝐴, such that for each 𝑖
we have

𝑠𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑇𝑥 = 𝑀𝑥.

So for 𝑡𝑖𝑗(𝑥) ∶≡ 𝑠𝑗(𝑥)−1 ⋅ 𝑠𝑖(𝑥) we have 𝑡𝑖𝑗 + 𝑡𝑗𝑘 = 𝑡𝑖𝑘. By algebra,
we get 𝑢𝑖 ∶ (𝑥 ∶ 𝐷(𝑓𝑖)) → 𝑀𝑥 with 𝑡𝑖𝑗 = 𝑢𝑖 − 𝑢𝑗. Then the

̃𝑠𝑖 ∶≡ 𝑠𝑖 − 𝑢𝑖 glues to a global trivialization.
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