A Foundation for Synthetic Algebraic Geometry

Felix Cherubini, Thierry Coquand, Matthias Hutzler

Acknowledgements and Subprojects

The approach to synthetic algebraic geometry is based on work by Ingo Blechschmidt, Anders Kock and David Jaz Myers.

Acknowledgements and Subprojects

The approach to synthetic algebraic geometry is based on work by Ingo Blechschmidt, Anders Kock and David Jaz Myers.

The approach to cohomology we use was proposed by Michael Shulman in 2013 and was later worked out by Floris van Doorn. It is known to many people in the field.

Acknowledgements and Subprojects

The approach to synthetic algebraic geometry is based on work by Ingo Blechschmidt, Anders Kock and David Jaz Myers.

The approach to cohomology we use was proposed by Michael Shulman in 2013 and was later worked out by Floris van Doorn. It is known to many people in the field.

Present work is joint with Ingo Blechschmidt, Hugo Moeneclaey, Josselin Poiret, and David Wärn.

Foundations
Proper Schemes
Differential Geometry
Čech Cohomology
Formalization

(Felix, Matthias, Thierry)
(David, Felix, Matthias, Thierry)
(David, Felix, Hugo, Matthias)
(David, Felix, Ingo)
(Felix, Josselin, Matthias)
https://github.com/felixwellen/synthetic-zariski/

* Schemes $=$ quasi-compact, quasi-separated schemes of finite type

Synthetic algebraic geometry

Axiom: We have a local, commutative ring R.

Synthetic algebraic geometry

Axiom: We have a local, commutative ring R.
For a finitely presented R-algebra A, define:

$$
\operatorname{Spec}(A): \equiv \operatorname{Hom}_{R \text {-algebra }}(A, R)
$$

Synthetic algebraic geometry

Axiom: We have a local, commutative ring R.
For a finitely presented R-algebra A, define:

$$
\operatorname{Spec}(A): \equiv \operatorname{Hom}_{R \text {-algebra }}(A, R)
$$

Axiom (synthetic quasi-coherence (SQC)):
For any finitely presented R-algebra A, the map

$$
a \mapsto(\varphi \mapsto \varphi(a)): A \xrightarrow{\sim} R^{\operatorname{Spec}(A)}
$$

is an equivalence.

Synthetic algebraic geometry

Axiom: We have a local, commutative ring R.
For a finitely presented R-algebra A, define:

$$
\operatorname{Spec}(A): \equiv \operatorname{Hom}_{R \text {-algebra }}(A, R)
$$

Axiom (synthetic quasi-coherence (SQC)):
For any finitely presented R-algebra A, the map

$$
a \mapsto(\varphi \mapsto \varphi(a)): A \xrightarrow{\sim} R^{\operatorname{Spec}(A)}
$$

is an equivalence.
Example: $\operatorname{Spec}(R[X])=R$.

Synthetic algebraic geometry

Axiom: We have a local, commutative ring R.
For a finitely presented R-algebra A, define:

$$
\operatorname{Spec}(A): \equiv \operatorname{Hom}_{R \text {-algebra }}(A, R)
$$

Axiom (synthetic quasi-coherence (SQC)):
For any finitely presented R-algebra A, the map

$$
a \mapsto(\varphi \mapsto \varphi(a)): A \xrightarrow{\sim} R^{\operatorname{Spec}(A)}
$$

is an equivalence.
Example: $\operatorname{Spec}(R[X])=R$. Thus:

$$
R[X] \xrightarrow{\sim} R^{R}
$$

polynomials $=$ functions !!

Towards schemes

For $f: A$ define:

$$
D(f): \equiv\{x: \operatorname{Spec}(A) \mid x(f) \text { is invertible }\}
$$

Towards schemes

For $f: A$ define:

$$
D(f): \equiv\{x: \operatorname{Spec}(A) \mid x(f) \text { is invertible }\}
$$

For $A=R$, we get open propositions:

$$
\text { OpenProp }: \equiv\left\{\left(r_{1} \text { inv. }\right) \vee \ldots \vee\left(r_{n} \text { inv. }\right) \mid r_{i}: R\right\}
$$

Towards schemes

For $f: A$ define:

$$
D(f): \equiv\{x: \operatorname{Spec}(A) \mid x(f) \text { is invertible }\}
$$

For $A=R$, we get open propositions:

$$
\text { OpenProp }: \equiv\left\{\left(r_{1} \text { inv. }\right) \vee \ldots \vee\left(r_{n} \text { inv. }\right) \mid r_{i}: R\right\}
$$

Lemma: There is an embedding:

$$
\left\{D\left(f_{1}\right) \cup \cdots \cup D\left(f_{n}\right) \mid f_{i}: A\right\} \quad \hookrightarrow \quad \text { OpenProp }{ }^{\operatorname{Spec}(A)}
$$

But is it an equivalence??

Towards schemes

For $f: A$ define:

$$
D(f): \equiv\{x: \operatorname{Spec}(A) \mid x(f) \text { is invertible }\}
$$

For $A=R$, we get open propositions:

$$
\text { OpenProp }: \equiv\left\{\left(r_{1} \text { inv. }\right) \vee \ldots \vee\left(r_{n} \text { inv. }\right) \mid r_{i}: R\right\}
$$

Lemma: There is an embedding:

$$
\left\{D\left(f_{1}\right) \cup \cdots \cup D\left(f_{n}\right) \mid f_{i}: A\right\} \quad \hookrightarrow \quad \text { OpenProp }{ }^{\operatorname{Spec}(A)}
$$

But is it an equivalence??
Yes, using Zariski-local choice!

Zariski-local choice

Axiom (Zariski-local choice):

For every surjective π, there merely exist local sections s_{i}

with $f_{1}, \ldots, f_{n}: A$ coprime.

Some more results

$>$ OpenProp ${ }^{\operatorname{Spec}(A)} \cong\{$ f.g. radical ideals of $A\}$

- OpenProp is closed under Σ-types.
- All functions Spec $A \rightarrow \mathbb{N}$ are bounded.
- The type of schemes is closed under Σ-types.

Some more results

$>$ OpenProp $^{\operatorname{Spec}(A)} \cong\{$ f.g. radical ideals of $A\}$
\checkmark OpenProp is closed under Σ-types.

- All functions Spec $A \rightarrow \mathbb{N}$ are bounded.

The type of schemes is closed under Σ-types.
For $A: X \rightarrow \mathrm{Ab}$, define cohomology as:

$$
H^{n}(X, A): \equiv\left\|\prod_{x: X} K\left(A_{x}, n\right)\right\|_{\mathrm{set}}
$$

- H^{n} coincides with Čech-Cohomology (for separated schemes).

A scheme X is affine if and only if

$$
H^{n}(X, M)=0
$$

for all $M: X \rightarrow R-\operatorname{Mod}_{\text {wqc }}$ and $n>0$.

Thank you!

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Properties:

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Properties:
The $H^{n}(X, \mathcal{F})$ are all abelian groups.

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Properties:
The $H^{n}(X, \mathcal{F})$ are all abelian groups.
Functoriality, covariant in \mathcal{F}, contravariant in X.

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Properties:
The $H^{n}(X, \mathcal{F})$ are all abelian groups.
Functoriality, covariant in \mathcal{F}, contravariant in X.
Some long exact sequence for coefficients.

Cohomology of sheaves

Let X be a type and $\mathcal{F}: X \rightarrow \mathrm{Ab}$ a dependent abelian group on X.
The n-th cohomology group of \mathcal{F} is

$$
H^{n}(X, \mathcal{F}): \equiv\left\|\prod_{x: X} K\left(\mathcal{F}_{x}, n\right)\right\|_{0}
$$

Properties:
The $H^{n}(X, \mathcal{F})$ are all abelian groups.
Functoriality, covariant in \mathcal{F}, contravariant in X.
Some long exact sequence for coefficients.
We have a Mayer-Vietoris-Lemma and more generally correspondence with Čech-Cohomology, for nice enough spaces.

Zariski-Choice and Cohomology

$$
\begin{aligned}
& \text { Let } X=\operatorname{Spec}(A) \text { and } M: X \rightarrow R \text {-Mod such that } \\
& \left((x: D(f)) \rightarrow M_{x}\right)=((x: X) \rightarrow M)_{f} \text {, then } \\
& \qquad H^{1}(X, M)=0
\end{aligned}
$$

Zariski-Choice and Cohomology

Let $X=\operatorname{Spec}(A)$ and $M: X \rightarrow R$-Mod such that $\left((x: D(f)) \rightarrow M_{x}\right)=((x: X) \rightarrow M)_{f}$, then

$$
H^{1}(X, M)=0
$$

Proof: Let $|T|: H^{1}(X, M) \equiv\left\|(x: X) \rightarrow K\left(M_{x}, 1\right)\right\|_{0}$ and from that $(x: X) \rightarrow\left\|T_{x}=M_{x}\right\|$.

Zariski-Choice and Cohomology

Let $X=\operatorname{Spec}(A)$ and $M: X \rightarrow R$-Mod such that $\left((x: D(f)) \rightarrow M_{x}\right)=((x: X) \rightarrow M)_{f}$, then

$$
H^{1}(X, M)=0
$$

Proof: Let $|T|: H^{1}(X, M) \equiv\left\|(x: X) \rightarrow K\left(M_{x}, 1\right)\right\|_{0}$ and from that $(x: X) \rightarrow\left\|T_{x}=M_{x}\right\|$. Our third axiom, Zariski-local choice, merely gives us coprime $f_{1}, \ldots, f_{n}: A$, such that for each i we have

$$
s_{i}:\left(x: D\left(f_{i}\right)\right) \rightarrow T_{x}=M_{x} .
$$

Zariski-Choice and Cohomology

Let $X=\operatorname{Spec}(A)$ and $M: X \rightarrow R$-Mod such that $\left((x: D(f)) \rightarrow M_{x}\right)=((x: X) \rightarrow M)_{f}$, then

$$
H^{1}(X, M)=0
$$

Proof: Let $|T|: H^{1}(X, M) \equiv\left\|(x: X) \rightarrow K\left(M_{x}, 1\right)\right\|_{0}$ and from that $(x: X) \rightarrow\left\|T_{x}=M_{x}\right\|$. Our third axiom, Zariski-local choice, merely gives us coprime $f_{1}, \ldots, f_{n}: A$, such that for each i we have

$$
s_{i}:\left(x: D\left(f_{i}\right)\right) \rightarrow T_{x}=M_{x} .
$$

So for $t_{i j}(x): \equiv s_{j}(x)^{-1} \cdot s_{i}(x)$ we have $t_{i j}+t_{j k}=t_{i k}$.

Zariski-Choice and Cohomology

Let $X=\operatorname{Spec}(A)$ and $M: X \rightarrow R$-Mod such that $\left((x: D(f)) \rightarrow M_{x}\right)=((x: X) \rightarrow M)_{f}$, then

$$
H^{1}(X, M)=0
$$

Proof: Let $|T|: H^{1}(X, M) \equiv\left\|(x: X) \rightarrow K\left(M_{x}, 1\right)\right\|_{0}$ and from that $(x: X) \rightarrow\left\|T_{x}=M_{x}\right\|$. Our third axiom, Zariski-local choice, merely gives us coprime $f_{1}, \ldots, f_{n}: A$, such that for each i we have

$$
s_{i}:\left(x: D\left(f_{i}\right)\right) \rightarrow T_{x}=M_{x} .
$$

So for $t_{i j}(x): \equiv s_{j}(x)^{-1} \cdot s_{i}(x)$ we have $t_{i j}+t_{j k}=t_{i k}$. By algebra, we get $u_{i}:\left(x: D\left(f_{i}\right)\right) \rightarrow M_{x}$ with $t_{i j}=u_{i}-u_{j}$. Then the $\tilde{s}_{i}: \equiv s_{i}-u_{i}$ glues to a global trivialization.

