Rigidification of cartesian closed $\infty\text{-functors}$

El Mehdi Cherradi

IRIF - CNRS - Université Paris Cité, MINES ParisTech - Université PSL

22 April 2023

Outline

1 The internal language conjectures

Some useful notions

- Tribes and clans
- Strictification and rigidification

3 The proofs

- First statement
- Second statement

The internal language conjectures

Conjecture

The functor Ho_{∞} , turning a relative category into a quasicategory, restricts to DK-equivalences

 $\iota: \mathsf{CompCat}_{\Sigma,\mathit{Id}} \to \mathsf{Qcat}_{\mathit{Iex}}$

$$\iota_{\pi}: \mathsf{CompCat}_{\Sigma, \Pi_{ext}, \mathit{Id}} o \mathsf{Qcat}_{\mathit{Icc}}$$

where

The internal language conjectures

Conjecture

The functor \mathbf{Ho}_{∞} , turning a relative category into a quasicategory, restricts to DK-equivalences

 $\iota: \mathsf{CompCat}_{\Sigma, \mathit{Id}} \to \mathsf{Qcat}_{\mathit{lex}}$ $\iota_{\pi}: \mathsf{CompCat}_{\Sigma, \Pi_{ext}, \mathit{Id}} \to \mathsf{Qcat}_{\mathit{lcc}}$

where

- The domain categories have morphisms that preserves the structure involved up to isomorphism.
- The codomain categories have morphisms that preserves the structure involved up to equivalence.

With **П**-types

The first part of the conjecture, about ι , has been proved by Kapulkin and Szumiło ([5]).

With Π-types

The first part of the conjecture, about ι , has been proved by Kapulkin and Szumiło ([5]).

In [1], we described an object-wise construction to get, from a lcc quasicategory C, a π -tribe \mathcal{T} (with its canonical comprehension structure) so that $\mathbf{Ho}_{\infty}(\mathcal{T}) \simeq C$.

With **П**-types

The first part of the conjecture, about ι , has been proved by Kapulkin and Szumiło ([5]).

In [1], we described an object-wise construction to get, from a lcc quasicategory C, a π -tribe \mathcal{T} (with its canonical comprehension structure) so that $\mathbf{Ho}_{\infty}(\mathcal{T}) \simeq C$.

This shows that the functor induced by ι_{π} on homotopy categories is essentially surjective on objects. We then claimed mistakenly that ι being fully faithful (as an ∞ -functor) implied directly the same for ι_{π} , and hence the second part of the conjecture.

The mistake

However, the argument overlooked the mismatch between the structure preservation expected from the morphisms

- up-to-isomorphism in $CompCat_{\Sigma,\Pi_{ext},Id}$
- up-to-equivalence in Qcat_{lcc}

The mistake

However, the argument overlooked the mismatch between the structure preservation expected from the morphisms

- up-to-isomorphism in $CompCat_{\Sigma,\Pi_{ext},Id}$
- up-to-equivalence in Qcat_{lcc}

One should also find a way to rigidify the lcc ∞ -functors in **Qcat**_{*lcc*}.

Outline

The internal language conjectures

2 Some useful notions

- Tribes and clans
- Strictification and rigidification

The proofs

- First statement
- Second statement

Clans

The notion of clan essentially axiomatizes/rephrases the structure on a category C equipped with a full comprehension structure, which is needed to interpret the core of type theory.

Clans

The notion of clan essentially axiomatizes/rephrases the structure on a category \mathcal{C} equipped with a full comprehension structure, which is needed to interpret the core of type theory.

Definition

A clan structure on a category C with a terminal object 1 is given by a class of maps F called fibrations such that:

- Isomorphims are fibrations, $X \rightarrow \mathbf{1}$ is a fibration for every X.
- Fibration are closed under composition. Pullbacks of fibrations exists and yield fibrations.

Tribes

A clan ${\cal C}$ is a tribe essentially if the underlying type theory admits (intensional) identity types.

Definition

A tribe C is clan such that:

- Every map factors as an anodyne map followed by a fibration.
- Anodyne maps are closed under pullback along fibrations.

Tribes

A clan ${\cal C}$ is a tribe essentially if the underlying type theory admits (intensional) identity types.

Definition

A tribe C is clan such that:

- Every map factors as an anodyne map followed by a fibration.
- Anodyne maps are closed under pullback along fibrations.

We will also consider π -tribes, which are essentially tribes such that every fibration admits an *internal product* along any fibration. Essentially, this means that the underlying type theory also has Π -types.

Canonical comprehension

Given a $\pi\text{-tribe}\ \mathcal{T},$ the canonical comprehension structure given by the Grothendieck fibration

$$\textbf{cod}:\mathcal{T}_{\mathsf{fib}}^{\rightarrow}\rightarrow\mathcal{T}$$

supports Σ and Π types that are stable under pullback up to isomorphism.

Substitution is well-defined and functorial up to isomorphism.

Strictification

A strictification procedure aims at replacing this comprehension category by an equivalent split one (the splitting is meant to include the Π -types choices).

Pictorially:

Isomorphisms _____ Equalities

Cohenrece in an ∞ -category

Given a locally cartesian closed $(\infty,1)$ -category C (e.g. a quasicategory) with a terminal object, pullbacks give a substitution operation which is well-defined and functorial up to (homotopy) equivalence. Internal products are also defined (and pullback-stable) up to equivalence.

Rigidification

A **rigidification** procedure aims at replacing C by a π -tribe presenting the same $(\infty, 1)$ -category (up to equivalence).

Pictorially:

Equivalences — Isomorphisms

Outline

The internal language conjectures

Some useful notions

- Tribes and clans
- Strictification and rigidification
- 3 The proofs
 - First statement
 - Second statement

The approach for ι

In [5], the authors' approach for proving the first part of the conjecture could be summed up as:

Factor ι as

$$\mathsf{CompCat}_{\Sigma,\mathsf{Id}} o \mathsf{Trb} o \mathsf{Qcat}_{\mathit{lex}}$$

• Observe that the canonical functor

$$\textbf{Trb} \rightarrow \textbf{CompCat}_{\Sigma, \text{Id}}$$

is a homotopy inverse to

 $\textbf{CompCat}_{\Sigma, \text{Id}} \to \textbf{Trb}$

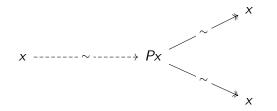
The approach for ι

• Find a subcategory **sTrb** of **Trb**, equivalent to **Trb** as a relative category, that can that be equipped with a fibration category structure.

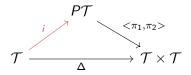
• Construct a functorial rigidification functor $Qcat_{lex} \rightarrow sTrb$ whose derived functor is inverse equivalence to (the derived functor of) $sTrb \rightarrow Qcat_{lex}$.

Trb can be equipped with a notion of fibration making it "almost" a fibration category in that, given a tribe \mathcal{T} , there is a canonical tribe $P\mathcal{T}$ whose objects are essentially the spans of trivial fibration in \mathcal{T} .

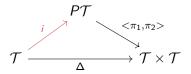
For every object x, we may chose a path object Px (in T) for x:



We then have a mapping $i : T \rightarrow PT$ fitting in a commutative triangle

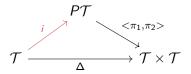


We then have a mapping $i: \mathcal{T} \to \mathcal{PT}$ fitting in a commutative triangle



However, the choice made need not imply that the mapping i is functorial. This is how we fall short of constructing a path object for \mathcal{T} , the only thing left needed for **Trb** to be a fibration category.

We then have a mapping $i: \mathcal{T} \to \mathcal{PT}$ fitting in a commutative triangle



However, the choice made need not imply that the mapping *i* is functorial. This is how we fall short of constructing a path object for \mathcal{T} , the only thing left needed for **Trb** to be a fibration category. If \mathcal{T} is a semi-simplicial tribe, taking $Px := x^{\Delta^1}$ makes *i* functorial.

The approach for ι_{π}

To prove the second part of the conjecture, our approach is the following:

• Factor ι_{π} as

$$\mathsf{CompCat}_{\Sigma,\Pi_{\mathsf{ext}},\mathsf{Id}} o \mathsf{hTrb}_{\pi} o \mathsf{Qcat}_{\mathit{lcc}}$$

where $hTrb_{\pi}$ is a full subcategory of Trb_{π} admitting a fibration category structure.

• Observe that the canonical functor

$$\mathbf{hTrb}_{\pi} \rightarrow \mathbf{CompCat}_{\Sigma,\Pi_{\mathsf{ext}},\mathsf{Id}}$$

is a homotopy inverse to the first inclusion.

The approach for ι_{π}

• Check that (the second inclusion in the factorization of) ι restricts to a DK-equivalence

$$\mathsf{hTrb}_{\pi}^{\sim} o \mathsf{Qcat}_{\mathit{lcc}}$$

where $\mathbf{hTrb}_{\pi}^{\sim}$ is a version of \mathbf{hTrb}_{π} with morphisms preserving internal product up-to-equivalence.

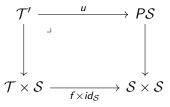
• Provide a rigidification procedure on morphims to prove that the inclusion $\mathbf{hTrb}_{\pi} \rightarrow \mathbf{hTrb}_{\pi}^{\sim}$ is a DK-equivalence.

Second statement

The rigidification tool

Lemma

Consider a morphism $f : \mathcal{T} \to S$ in $\mathbf{hTrb}_{\pi}^{\sim}$ and form the following pullback square:



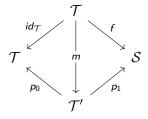
Then \mathcal{T}' is a π -tribe equivalent to \mathcal{T} and the morphisms $\mathcal{T}' \to \mathcal{T}$ and $\mathcal{T}' \to \mathcal{S}$ are π -closed.

The rigidification tool at work

Corollary

 $Ho(hTrb_{\pi}) \rightarrow Ho(hTrb_{\pi}^{\sim})$ is full.

Proof.



implies $[f] = [p_1] \circ [p_0]^{-1}$ in $Ho(hTrb_{\pi}^{\sim})$

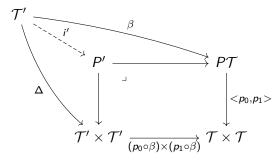
The rigidification tool at work

Corollary

 $Ho(hTrb_{\pi}) \rightarrow Ho(hTrb_{\pi}^{\sim})$ is essentially surjective on objects.

Proof.

Taking S = PT and $f := i : T \to PT$ the morphism into the path object:



Wrapping up

$\mathsf{Ho}(\mathsf{hTrb}_{\pi}) o \mathsf{Ho}(\mathsf{hTrb}_{\pi}^{\sim})$

is clearly faithful so that

$\iota_{\pi}: \textbf{CompCat}_{\Sigma,\Pi_{ext}, \textsf{Id}} \rightarrow \textbf{hTrb}_{\pi} \rightarrow \textbf{hTrb}_{\pi}^{\sim} \rightarrow \textbf{Qcat}_{\textit{\textit{Icc}}}$

is a composite of three DK-equivalences.

Thank you for you attention!

Some fibration categories of tribes

- sTrb the category of semi-simplicial tribes (as defined in [5])
- hTrb the full subcategory (of Trb) formed by those tribes T such there exists a morphism of tribe *ι* : T → PT which composes with the projection PT → T × T to yield the diagonal T → T × T

Some fibration categories of tribes

- **hTrb**_{π} the full subcategory (of **Trb**_{π}) formed by those π -tribes \mathcal{T} admitting a path object.
- hTrb[~]_π the (non-full) subcategory (of hTrb) consisting in the tribes which are equivalent to a π-tribe, and with morphisms between them the morphisms of tribes m : T → T' such that Ho_∞(m) preserves the structure of locally cartesian closed quasicategories (i.e. Ho_∞(m) is a cartesian closed ∞-functor).

References

E. M. Cherradi.

Interpreting type theory in a quasicategory: a yoneda approach.

arXiv preprint arXiv:2207.01967, 2022.

A. Joyal. Notes on clans and tribes. arXiv preprint arXiv:1710.10238,

2017.

K. Kapulkin.

Locally cartesian closed quasicategories from type theory. *arXiv preprint arXiv:1507.02648*, 2015. K. Kapulkin and P. L. Lumsdaine.

The homotopy theory of type theories. Advances in Mathematics,

337:1–38, 2018.

- K. Kapulkin and K. Szumiło. Internal languages of finitely complete (∞, 1)-categories. Selecta Mathematica, 25(2):1–46, 2019.
- 📔 K. Szumiło.

Homotopy theory of cofibration categories.

Homology, Homotopy and Applications, 18(2):345–357, 2016.