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The internal language conjectures

The internal language conjectures

Conjecture
The functor Ho∞, turning a relative category into a quasicategory,
restricts to DK-equivalences

ι : CompCatΣ,Id → Qcatlex

ιπ : CompCatΣ,Πext,Id → Qcatlcc

where

The domain categories have morphisms that preserves the structure
involved up to isomorphism.

The codomain categories have morphisms that preserves the structure
involved up to equivalence.
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The internal language conjectures

With Π-types

The first part of the conjecture, about ι, has been proved by Kapulkin and
Szumiło ([5]).

In [1], we described an object-wise construction to get, from a lcc quasicat-
egory C, a π-tribe T (with its canonical comprehension structure) so that
Ho∞(T ) ≃ C.

This shows that the functor induced by ιπ on homotopy categories is essen-
tially surjective on objects. We then claimed mistakenly that ι being fully
faithful (as an ∞-functor) implied directly the same for ιπ, and hence the
second part of the conjecture.
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The internal language conjectures

The mistake

However, the argument overlooked the mismatch between the structure
preservation expected from the morphisms

up-to-isomorphism in CompCatΣ,Πext,Id

up-to-equivalence in Qcatlcc

One should also find a way to rigidify the lcc ∞-functors in Qcatlcc .
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Some useful notions Tribes and clans

Clans

The notion of clan essentially axiomatizes/rephrases the structure on a cat-
egory C equipped with a full comprehension structure, which is needed to
interpret the core of type theory.

Definition
A clan structure on a category C with a terminal object 1 is given by a
class of maps F called fibrations such that:

Isomorphims are fibrations, X → 1 is a fibration for every X .
Fibration are closed under composition. Pullbacks of fibrations exists
and yield fibrations.
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Some useful notions Tribes and clans

Tribes

A clan C is a tribe essentially if the underlying type theory admits (inten-
sional) identity types.

Definition
A tribe C is clan such that:

Every map factors as an anodyne map followed by a fibration.
Anodyne maps are closed under pullback along fibrations.

We will also consider π-tribes, which are essentially tribes such that every
fibration admits an internal product along any fibration.
Essentially, this means that the underlying type theory also has Π-types.
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Some useful notions Strictification and rigidification

Canonical comprehension

Given a π-tribe T , the canonical comprehension structure given by the
Grothendieck fibration

cod : T →
fib → T

supports Σ and Π types that are stable under pullback up to isomorphism.

Substitution is well-defined and functorial up to isomorphism.
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Some useful notions Strictification and rigidification

Strictification

A strictification procedure aims at replacing this comprehension category
by an equivalent split one (the splitting is meant to include the Π-types
choices).

Pictorially:

Isomorphisms Equalities

El Mehdi Cherradi HoTT/UF 22/04/2023 10 / 27



Some useful notions Strictification and rigidification

Cohenrece in an ∞-category

Given a locally cartesian closed (∞,1)-category C (e.g. a quasicategory)
with a terminal object, pullbacks give a substitution operation which is
well-defined and functorial up to (homotopy) equivalence. Internal products
are also defined (and pullback-stable) up to equivalence.
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Some useful notions Strictification and rigidification

Rigidification

A rigidification procedure aims at replacing C by a π-tribe presenting the
same (∞,1)-category (up to equivalence).

Pictorially:

Equivalences Isomorphisms
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The proofs First statement

The approach for ι

In [5], the authors’ approach for proving the first part of the conjecture
could be summed up as:

Factor ι as
CompCatΣ,Id → Trb → Qcatlex

Observe that the canonical functor

Trb → CompCatΣ,Id

is a homotopy inverse to

CompCatΣ,Id → Trb
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The proofs First statement

The approach for ι

Find a subcategory sTrb of Trb, equivalent to Trb as a relative
category, that can that be equipped with a fibration category
structure.

Construct a functorial rigidification functor Qcatlex → sTrb whose
derived functor is inverse equivalence to (the derived functor of)
sTrb → Qcatlex .
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The proofs First statement

Fibration category of tribes

Trb can be equipped with a notion of fibration making it “almost” a fibration
category in that, given a tribe T , there is a canonical tribe PT whose objects
are essentially the spans of trivial fibration in T .
For every object x , we may chose a path object Px (in T ) for x :

x

x Px

x
∼

∼

∼
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The proofs First statement

Fibration category of tribes

We then have a mapping i : T → PT fitting in a commutative triangle

PT

T T × T

<π1,π2>

∆

i

However, the choice made need not imply that the mapping i is functorial.
This is how we fall short of constructing a path object for T , the only thing
left needed for Trb to be a fibration category.
If T is a semi-simplicial tribe, taking Px := x∆1 makes i functorial.
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The proofs Second statement

The approach for ιπ

To prove the second part of the conjecture, our approach is the following:
Factor ιπ as

CompCatΣ,Πext,Id → hTrbπ → Qcatlcc

where hTrbπ is a full subcategory of Trbπ admitting a fibration
category structure.
Observe that the canonical functor

hTrbπ → CompCatΣ,Πext,Id

is a homotopy inverse to the first inclusion.
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The proofs Second statement

The approach for ιπ

Check that (the second inclusion in the factorization of) ι restricts to
a DK-equivalence

hTrb∼
π → Qcatlcc

where hTrb∼
π is a version of hTrbπ with morphisms preserving

internal product up-to-equivalence.

Provide a rigidification procedure on morphims to prove that the
inclusion hTrbπ → hTrb∼

π is a DK-equivalence.
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The proofs Second statement

The rigidification tool

Lemma
Consider a morphism f : T → S in hTrb∼

π and form the following pullback
square:

T ′ PS

T × S S × Sf ×idS

u

⌟

Then T ′ is a π-tribe equivalent to T and the morphisms T ′ → T and
T ′ → S are π-closed.
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The proofs Second statement

The rigidification tool at work

Corollary
Ho(hTrbπ) → Ho(hTrb∼

π ) is full.

Proof.

T

T S

T ′

idT f

p0 p1

m

implies [f ] = [p1] ◦ [p0]−1 in Ho(hTrb∼
π )
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The proofs Second statement

The rigidification tool at work

Corollary
Ho(hTrbπ) → Ho(hTrb∼

π ) is essentially surjective on objects.

Proof.
Taking S = PT and f := i : T → PT the morphism into the path object:

T ′

P ′ PT

T ′ × T ′ T × T
(p0◦β)×(p1◦β)

i ′

<p0,p1>

⌟
∆

β
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The proofs Second statement

Wrapping up

Ho(hTrbπ) → Ho(hTrb∼
π )

is clearly faithful so that

ιπ : CompCatΣ,Πext,Id → hTrbπ → hTrb∼
π → Qcatlcc

is a composite of three DK-equivalences.
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The proofs Second statement

Thank you for you attention!
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The proofs Second statement

Some fibration categories of tribes

sTrb the category of semi-simplicial tribes (as defined in [5])

hTrb the full subcategory (of Trb) formed by those tribes T such
there exists a morphism of tribe ι : T → PT which composes with
the projection PT → T × T to yield the diagonal T → T × T
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The proofs Second statement

Some fibration categories of tribes

hTrbπ the full subcategory (of Trbπ) formed by those π-tribes T
admitting a path object.

hTrb∼
π the (non-full) subcategory (of hTrb) consisting in the tribes

which are equivalent to a π-tribe, and with morphisms between them
the morphisms of tribes m : T → T ′ such that Ho∞(m) preserves the
structure of locally cartesian closed quasicategories (i.e. Ho∞(m) is a
cartesian closed ∞-functor).
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The proofs Second statement

References

E. M. Cherradi.
Interpreting type theory in a
quasicategory: a yoneda
approach.
arXiv preprint arXiv:2207.01967,
2022.
A. Joyal.
Notes on clans and tribes.
arXiv preprint arXiv:1710.10238,
2017.
K. Kapulkin.
Locally cartesian closed
quasicategories from type theory.
arXiv preprint arXiv:1507.02648,
2015.

K. Kapulkin and P. L. Lumsdaine.

The homotopy theory of type
theories.
Advances in Mathematics,
337:1–38, 2018.
K. Kapulkin and K. Szumiło.
Internal languages of finitely
complete (∞, 1)-categories.
Selecta Mathematica, 25(2):1–46,
2019.
K. Szumiło.
Homotopy theory of cofibration
categories.
Homology, Homotopy and
Applications, 18(2):345–357,
2016.

El Mehdi Cherradi HoTT/UF 22/04/2023 27 / 27


	The internal language conjectures
	Some useful notions
	Tribes and clans
	Strictification and rigidification

	The proofs
	First statement
	Second statement


