V⁰ as a Tarski universe 00000 \mathcal{V}^0 as a precategory and its Rezk completion 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The category of iterative sets in HoTT

Elisabeth Bonnevier¹ Håkon R. Gylterud¹ Daniel Gratzer² Anders Mörtberg³

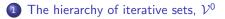
¹Department of Informatics, University of Bergen

²Department of Computer Science, Aarhus University

³Department of Mathematics, Stockholm University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline



(3) \mathcal{V}^0 as a precategory and its Rezk completion

V⁰ as a Tarski universe

 \mathcal{V}^0 as a precategory and its Rezk completion

The hierarchy of iterative sets

Recall the hierarchy of iterative sets:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The hierarchy of iterative sets

Recall the hierarchy of iterative sets:

Definition (The hierarchy of iterative sets)

We define the following predicate on Aczel's type $W_{A:U}A:$

iterative-set : $W_{A:\mathcal{U}}A \rightarrow \mathsf{Type}$

iterative-set (sup A f) := is-embedding $f \times \prod_{a:A}$ iterative-set (f a)

The hierarchy of iterative sets

Recall the hierarchy of iterative sets:

Definition (The hierarchy of iterative sets)

We define the following predicate on Aczel's type $W_{A:U}A:$

iterative-set :
$$W_{A:\mathcal{U}}A \rightarrow \text{Type}$$

iterative-set (sup $A f$) := is-embedding $f \times \prod_{a:A} \text{iterative-set} (f a)$

and take the corresponding subtype of $W_{A:U}A$:

$$\mathcal{V}^0 := \sum_{x: W_{A:\mathcal{U}}A} \text{iterative-set } x$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

V⁰ as a Tarski universe

\mathcal{V}^0 is an h-set

Theorem

 \mathcal{V}^0 is an h-set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

\mathcal{V}^0 is an h-set

Theorem

 \mathcal{V}^0 is an h-set.

Proof.

Sketch:

- \mathcal{V}^0 is a fixpoint of the functor $X \mapsto \sum_{A:U} (A \hookrightarrow X)$
- For $(A, f), (B, g) : \sum_{A:U} (A \hookrightarrow \mathcal{V}^0)$ we have:

$$((A, f) = (B, g)) \simeq \prod_{x:\mathcal{V}^0} (\text{fiber } f \ x \simeq \text{fiber } g \ x)$$

• All the fibers are propositions

 \mathcal{V}^0 as a Tarski universe

 v^0 as a precategory and its Rezk completion

\mathcal{V}^0 as a Tarski universe

A Tarski universe is a type with a type family.

\mathcal{V}^0 as a Tarski universe

A Tarski universe is a type with a type family.

Definition

We define the following decoding function:

 $\mathsf{EI}: \mathcal{V}^0 \to \mathcal{U}$ $\mathsf{EI} (\sup A f, p) := A$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Types and type formers in \mathcal{V}^{0}

We have the following in \mathcal{V}^0 if we have them in \mathcal{U} .

Type formers:

- Π-types
- Σ-types
- identity types
- quotients

Types:

- the empty type
- the unit type
- the booleans
- the natural numbers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Computational behavior of El

The decoding of the types and type formers is definitional.

For $x : \mathcal{V}^0$, $y : \text{El } x \to \mathcal{V}^0$: $\text{El}(\Pi^0 \times y) \equiv \prod_{a:\text{El } x} \text{El}(y a)$ The hierarchy of iterative sets, \mathcal{V}^0

V⁰ as a Tarski universe

 v^0 as a precategory and its Rezk completion

\mathcal{V}^0 is a universe of h-sets

Theorem

The decoding El x of any $x : \mathcal{V}^0$ is an h-set.

The hierarchy of iterative sets, \mathcal{V}^0

V⁰ as a Tarski universe

 v^0 as a precategory and its Rezk completion

\mathcal{V}^0 is a universe of h-sets

Theorem

The decoding El x of any $x : \mathcal{V}^0$ is an h-set.

Proof.

By construction, El x embeds into \mathcal{V}^0 , which is an h-set.

・ロト・西ト・山田・山田・山口・

Univalence

Univalence(?)

Is the universe \mathcal{V}^0 univalent? No. For $x, y : \mathcal{V}^0$, the type x = y is an h-proposition, while El $x \simeq$ El y is in general a proper h-set.

The hierarchy of iterative sets, \mathcal{V}^0

 \mathcal{V}^0 as a Tarski universe

 \mathcal{V}^0 as a precategory and its Rezk completion

$\overline{\mathsf{P}\mathsf{rec}}\mathsf{ategory}\ \mathsf{structure}\ \mathsf{on}\ \mathcal{V}^0$

Definition (Precategory structure on \mathcal{V}^0)

The precategory \mathbf{V}^0 is given by

- $Ob(\mathbf{V}^0) := \mathcal{V}^0$
- $\operatorname{Hom}_{\mathbf{V}^0}(x, y) := \operatorname{El} x \to \operatorname{El} y$

The hierarchy of iterative sets, \mathcal{V}^0

V⁰ as a Tarski universe

 \mathcal{V}^0 as a precategory and its Rezk completion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$\overline{\mathsf{P}\mathsf{rec}}\mathsf{ategory}\ \mathsf{structure}\ \mathsf{on}\ \mathcal{V}^0$

Definition (Precategory structure on \mathcal{V}^0)

The precategory \mathbf{V}^0 is given by

- $Ob(\mathbf{V}^0) := \mathcal{V}^0$
- $\operatorname{Hom}_{\mathbf{V}^0}(x, y) := \operatorname{El} x \to \operatorname{El} y$

Theorem

 \mathbf{V}^0 is finitely cocomplete and locally cartesian closed.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

CwF structure

We can *almost* define a CwF structure on **HSet**:

- Ty $\Gamma := \Gamma \rightarrow \mathcal{HSet}$
- Tm $(\Gamma, A) := \prod_{x:\Gamma} A x$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

CwF structure

We can *almost* define a CwF structure on **HSet**:

- Ty $\Gamma := \Gamma \rightarrow \mathcal{HSet}$
- Tm $(\Gamma, A) := \prod_{x:\Gamma} A x$

Problem: Ty Γ is not an h-set!

CwF structure

We can *almost* define a CwF structure on **HSet**:

- Ty $\Gamma := \Gamma \rightarrow \mathcal{HSet}$
- Tm $(\Gamma, A) := \prod_{x:\Gamma} A x$

Problem: Ty Γ is not an h-set!

 \mathcal{V}^0 is an h-set, so we can construct the corresponding CwF structure:

- Ty $\Gamma := \mathsf{EI} \ \Gamma \to \mathcal{V}^0$
- $\operatorname{Tm}(\Gamma, A) := \prod_{x: \mathsf{El} \Gamma} \mathsf{El}(Ax)$

The rest of the construction is analogous to the one for **HSet**.

V⁰ as a Tarski universe

 \mathcal{V}^0 as a precategory and its Rezk completion $\mathcal{O} \cap \mathcal{O}$

Relationship between **V**⁰ and **HSet**

El extends to a functor $V^0 \to HSet,$ which is full and faithful. Is HSet the Rezk completion of $V^0?$

Relationship between **V**⁰ and **HSet**

El extends to a functor $V^0 \to HSet,$ which is full and faithful. Is HSet the Rezk completion of $V^0?$

The functor is essentially surjective if and only if the function El is surjective.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relationship between **V**⁰ and **HSet**

El extends to a functor $V^0 \to HSet,$ which is full and faithful. Is HSet the Rezk completion of $V^0?$

The functor is essentially surjective if and only if the function El is surjective.

Theorem (de Jong-Kraus-Forsberg-Xu)

The HoTT book V is equivalent to the type of covered marked extensional well-founded orders.

Relationship between **V**⁰ and **HSet**

El extends to a functor $V^0 \to HSet,$ which is full and faithful. Is HSet the Rezk completion of $V^0?$

The functor is essentially surjective if and only if the function El is surjective.

Theorem (de Jong-Kraus-Forsberg-Xu)

The HoTT book V is equivalent to the type of covered marked extensional well-founded orders.

Corollary

 \mathcal{V}^0 is equivalent to the type of covered marked extensional well-founded orders.

Relationship between **V**⁰ and **HSet**

El extends to a functor $V^0 \to HSet,$ which is full and faithful. Is HSet the Rezk completion of $V^0?$

The functor is essentially surjective if and only if the function El is surjective.

Theorem (de Jong-Kraus-Forsberg-Xu)

The HoTT book V is equivalent to the type of covered marked extensional well-founded orders.

Corollary

 \mathcal{V}^0 is equivalent to the type of covered marked extensional well-founded orders.

The assumption that El is surjective corresponds to Shulman's axiom of well-founded materialisation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Summary

 $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on \mathbf{V}^0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on \mathbf{V}^0
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on V⁰
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}
- Formalised using the Agda proof assistant

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on V⁰
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}
- Formalised using the Agda proof assistant
- Future work:

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on V⁰
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}
- Formalised using the Agda proof assistant
- Future work:
 - $\bullet~$ Universes in \mathcal{V}^0

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on V⁰
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}
- Formalised using the Agda proof assistant
- Future work:
 - \bullet Universes in \mathcal{V}^0
 - CwF structure on presheaves on \mathbf{V}^0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $\bullet \ \mathcal{V}^0$ as a Tarski universe and as a precategory
- CwF structure on V⁰
- Relationship between \boldsymbol{V}^0 and \boldsymbol{HSet}
- Formalised using the Agda proof assistant
- Future work:
 - $\bullet~$ Universes in \mathcal{V}^0
 - CwF structure on presheaves on \boldsymbol{V}^0
 - Higher h-level generalisation: \mathcal{V}^n