
Specifying QIITs using Containers

Thorsten Altenkirch1 and Stefania Damato1

University of Nottingham, Nottingham, UK
{thorsten.altenkirch, stefania.damato}@nottingham.ac.uk

We present ongoing work on providing semantics and syntax for QIITs via generalised contain-
ers. Our aim is to contribute towards the long-term goal of providing a rigorous theoretical
foundation for higher inductive types in HoTT.

What are QIITS? Induction-induction allows us to simultaneuosly define a type A : Type
with a family B : A → Type over A, where the constructors of A can refer to B. This means
we can refer to a family (e.g. a predicate) over A when defining A itself. Quotient inductive
types are inductive types that not only admit point constructors, but also path constructors,
or equalities. Combining these two together, we get quotient inductive-inductive types (QIITs).
QIITs can also be viewed as set-truncated higher inductive types with induction-induction. The
QIIT of the syntax of a very basic type theory is given below as an example.

data Con : Set data Ty : Con → Set

data Con where
⋄ : Con
, : (Γ : Con) → Ty Γ → Con
eq : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → (Γ , A) , B ≡ Γ , σ Γ A B

data Ty where
ι : (Γ : Con) → Ty Γ
σ : (Γ : Con) (A : Ty Γ) (B : Ty (Γ , A)) → Ty Γ

Induction-induction allows us to refer to Ty and σ when defining Con, while quotienting allows
us to write eq as a constructor of Con.

Semantics of QIITs Simple inductive types and inductive families can be described seman-
tically as the initial algebras of container functors and indexed container functors respectively
[1, 3]. A similar semantic description for QIITs has not yet been established. The first obstacle
we face is that due to the high dependency allowed between constructors of different sorts, we
have no way of expressing QIITs using endofunctors. To overcome this first obstacle, the usual
functorial semantics of inductive types can be generalised to QIITs, by starting off with a cat-
egory of the sorts of a QIIT, and adding one constructor at a time, where the nth constructor
is represented by a pair of functors Ln (the left hand side, or the arguments) and Rn (the
right hand side, or the target type, which can either be a sort or an equality). At the end
of this process, once all the constructors are added, we end up with a category of ‘dependent
dialgebras’, whose initial object corresponds to the QIIT [2].

Specifying QIITs using Containers Altenkirch and Damato

This process tells us that if a QIIT specification has an initial algebra, then we can describe
it in a specific way. However, it doesn’t tell us which QIIT specifications have initial algebras.
This is precisely the problem we aim to tackle, namely, we want to provide a canonical way to
represent QIIT specifications that admit an initial algebra, i.e. the strictly positive ones. The
way this was achieved for simple inductive types and inductive families was using containers.
We take inspiration from this and aim to ‘containerify’ the semantics given in [2] to obtain
semantics for strictly positive QIITs. Although our investigation is in its early stages and most
of what follows is conjectural, all of our examples so far have corroborated the results below.

Containerification Our approach involves applying restrictions to the pair of functors Ln and
Rn in order to only allow QIIT specifications that are guaranteed to have an initial algebra. One
such restriction is ensuring Ln and Rn are container functors. Since these functors will have
types Ln : An → Set and Rn : ∫ Ln → Set,1 and since the containers developed so far can only
represent endofunctors, we require a more general version of containers. A generalised container
[4] over an arbitrary category C is given by a set of shapes S : Set and a family of positions
over the shapes P : S → |C|, written S ◁ P . This gives rise to a functor JS ◁ P K : C → Set,
which on objects X : |C| is defined as JS ◁ P KX :=

∑
(s : S)(C(P s,X)).

The first restriction we identified is for Ln and Rn to be generalised container functors. In this
case, we would have SL,n : Set and PL,n : SL,n → |An| and be able to write Ln : An → Set as

Ln X ∼= JSL,n ◁ PL,nKX =
∑

(s : SL,n)(An(PL,n s,X)).

We would also have SR,n : Set and PR,n : SR,n → | ∫ Ln| with components PX
R,n, P

s
R,n, and P f

R,n.
Further restrictions we identified for strict positivity are (i) SR,n = SL,n and (ii) P s

R,n t = t,
which allow us to write Rn : ∫ Ln → Set just using the two parameters PX

R,n and P f
R,n:

Rn (X, (s, f)) ∼= J(t : SR,n) ◁ (P
X
R,n t, (P

s
R,n t, P

f
R,n t))K (X, (s, f))

∼=
∑

(h : An(P
X
R,n s,X))(h ◦ P f

R,n s = f).

Assuming the existence of QIITs in the metatheory, this scheme is general enough to encode
both point and path constructors.

A syntax for QIITs The ‘containerified’ semantics described above also gives rise to a syntax
for QIITs. A specification of a QIIT consists of a list of constructors, each of which is specified
by the parameters SL,n, PL,n, P

X
R,n and P f

R,n. We expect this syntax to be a refinement of
the theory of signatures presented in [5]. We hope this alternative syntax facilitates a formal
reduction from inductive-inductive types to inductive families, and helps us identify a so-called
QW-type, which would be a succinct type to which all strictly positive QIITs could be reduced.

1An is the category of algebras to which we are adding a constructor, and ∫ F is the category of elements of F .

2

Specifying QIITs using Containers Altenkirch and Damato

References
[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing strictly positive types. Theo-

retical Computer Science, 342(1):3–27, 2005. Applied Semantics: Selected Topics.
[2] T. Altenkirch, P. Capriotti, G. Dijkstra, N. Kraus, and F. Nordvall Forsberg. Quotient inductive-

inductive types. In C. Baier and U. Dal Lago, editors, FoSSACS, pages 293–310. Springer, 2018.
[3] T. Altenkirch, N. Ghani, P. Hancock, C. McBride, and P. Morris. Indexed containers. Journal of

Functional Programming, 25:e5, 2015.
[4] T. Altenkirch and A. Kaposi. A container model of type theory. In TYPES 2021, 2021.
[5] A. Kaposi, A. Kovács, and T. Altenkirch. Constructing quotient inductive-inductive types. Proc.

ACM Program. Lang., 3(POPL), 2019.

3

