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Karatsuba’s algorithm, a divide and conquer algorithm for fast multiplication [5], can also
be used to compute the product of two polynomials. Formally verified versions of this algorithm
for polynomials have been implemented in several proof assistants by now. This includes an
implementation in Coq’s CoqEAL library [3], as well as a more recent implementation in Agda’s
DoCon-A library [7]. In both of these libraries, polynomials are essentially implemented as
lists of coefficients with a proof that the last coefficient is non-zero. Such an implementation,
however, can only be equipped with a ring structure if the base ring has decidable equality,
since one needs to be able to decide whether an element in the list of coefficients is zero or not.1

We want to demonstrate that with the help of higher-inductive types (HIT) we can give
a formally verified implementation of Karatsuba’s algorithm that works for polynomials over
arbitrary rings.2 To this end we use Cubical Agda, a recent extension of Agda with fully compu-
tational support for HITs. Cubical Agda’s library has several implementations of polynomials
that do not require the base ring to have a decidable equality. One of these uses a simple HIT
to represent polynomials as lists of coefficients:

data R[X] : Type where
[] : R[X]
_::_ : R → R[X] → R[X]
drop0 : 0r :: [] ≡ []

Here 0r is the zero element of the base ring R. Points of this HIT are thus lists of coefficients
and the higher constructor drop0 equates the singleton list [ 0r ] with the empty list [ ]. It turns
out that this is enough to equate lists up to trailing zeros (representing the same polynomial),
allowing one to construct the ring structure on R[X] and prove its universal property [9].

Karatsuba’s algorithm can actually be done for polynomials over arbitrary rings (with or
without decidable equality) [1, Sec. 6.1]. Given a polynomial p(X) = a0 + a1X + · · ·+ anX

n,
we can split it into coefficients of even and odd degree as polynomials pe(X) = a0 + a2X + . . .
and po(X) = a1 + a3X + . . . and rewrite our polynomial as p(X) = pe(X

2)+X · po(X2). With
this we can write the product of two polynomials as

pq = peqe(X
2) +X ·

(
(pe + po)(qe + qo)− peqe − poqo

)
(X2) +X2 · poqo(X2)

Writing the multiplication this way, we only have to evaluate three multiplications recursively,
namely peqe, poqo and (pe + po)(qe + qo). Note that all of these multiplications take inputs
of roughly half the size of the original p and q. Where the naïve algorithm needs four multi-
plications and runs in O(n2) time (n being degree of the polynomials involved), Karatsuba’s
algorithm thus runs in O(nlog2 3) ≈ O(n1.585) time.

1Naturally, one would like to work constructively to ensure computational meaning. In this constructive
setting one might also be able to consider rings with an inequality relation [8].

2The formalization can be found here: https://github.com/mzeuner/cubical/blob/Karatsuba/Cubical/Algebra/
Polynomials/UnivariateList/Karatsuba.agda

https://github.com/mzeuner/cubical/blob/Karatsuba/Cubical/Algebra/Polynomials/UnivariateList/Karatsuba.agda
https://github.com/mzeuner/cubical/blob/Karatsuba/Cubical/Algebra/Polynomials/UnivariateList/Karatsuba.agda
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As the splitting of the polynomials is non-trivial, Agda’s termination-checker will not rec-
ognize the arguments in the recursive calls to be structurally smaller than the original input.
To this end, one can introduce an additional natural number argument, often called the fuel.
In each recursive call the fuel is decreased by one until it reaches zero, at which point one just
performs naïve multiplication. Now, we can prove the algorithm correct regardless of the fuel
level. In the case of our HIT polynomials we even need recursive calls of this correctness proof
to fill in paths arising from the presence of drop0 in the definition of the algorithm. We thus
arrive at a mutually recursive definition of the algorithm with fuel and its correctness proof:

karatsubaRec : N → R[X] → R[X] → R[X]
karatsubaRec≡ : ∀ (n : N) (p q : R[X]) → karatsubaRec n p q ≡ p · q

The next step is to find a lower bound for the fuel, so that all the recursive calls can be made
before the fuel reaches zero.3 One such bound is the maximum of the degrees of the polynomials
that are being multiplied. Unfortunately, if the base ring doesn’t have decidable equality we
cannot define the degree of a polynomial. In our HIT case we cannot even speak of the “length”
of a list of coefficients as drop0 requires [ 0r ] and [ ] to be assigned the same value (up to path).
We can however define a “truncated length” function mapping into the propositional truncation
of naturals:

truncLength : R[X] → ∥ N ∥
truncLength [] = | 0 |
truncLength (a :: p) = map suc (truncLength p)
truncLength (drop0 i) = squash | 1 | | 0 | i

Note that the value of truncLength still carries computational information, even if the codomain
is a proposition. To leverage this information we can observe that the correctness proof
karatsubaRec≡ implies that karatsubaRec n is the same operation (namely multiplication) for
any n : N. The type of operations R[X] → R[X] → R[X] is a set and by a result due to Kraus [6]
this lets us factor karatsubaRec through the canonical map N → ∥N ∥. We thus get a map

karatsubaTruncRec : ∥ N ∥ → R[X] → R[X] → R[X]

such that karatsubaTruncRec |n| p q = karatsubaRec n p q definitionally for all n : N and
p q : R[X]. With this we can define our algorithm with an appropriate bound for the fuel that
will compute properly in the case of lists of coefficients not containing drop0:

karatsuba : R[X] → R[X] → R[X]
karatsuba p q = let fuelBound = map2 max (truncLength p) (truncLength q)

in karatsubaTruncRec fuelBound p q

As mentioned before, this algorithm works for any ring R and the methods described here could
be useful more generally for a library of verified computer algebra algorithms for rings without
decidable equality. A natural next step would be to compile this code to a runable program.
This can be done using Agda’s --erased-cubical flag [4]. One would like to make sure that
the rather complicated paths used in the correctness proof do not interfere with the program
at runtime. To this end all HITs involved would need to have erased higher constructors [2],
which will result in quite a bit of rewriting of the original code.

3Observe that we can not prove a bound for the fuel in this setting. This would essentially require complexity
theoretic reasoning, really extending the scope of the simple algebraic correctness proof presented here.
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