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1 Introduction

1.1 Motivation

Out of the many different branches of algebraic topology we may study in HoTT, cohomology theory has
the advantage of having a particularly simple and practical definition. In classical algebraic topology, it
also constitutes a powerful tool for distinguishing spaces and is often easier to handle than, for instance,
the theory of homotopy groups. For those reasons, it has been thoroughly investigated over the last years,
starting with the IAS year [7] and culminating in developments and proofs of of e.g. the Eilenberg-Steenrod
axioms [4], the Serre spectral sequence [9], cellular cohomology [3], and π4(S3) ∼= Z/2Z [1].

More recently, formalizations and computations of several Z cohomology groups were carried out in
Cubical Agda [2]. This talk aims to share our continuation of this work in [5]. We will explain how we
have completed the first formalization of cohomology rings (with arbitrary ring coefficients) and computed
different examples of these in Cubical Agda [10]. Doing so, we will illustrate how data structures influence
the formalization by considering the cases of the direct sum and multivariate polynomials, essential objects
in the formalization and computation of cohomology rings. Moreover, we will explain how these data
structures can yield a data refinement problem — not in computer science but in mathematics — and
how this can be handled using univalence and the Structure Identity Principle (SIP)[8, Section 9.8]. In
addition, we will also discuss how the power of computation in constructive mathematics can already be
partially used as aid in the computation of cup products.

1.2 Cohomology Rings

A guiding principle in algebraic topology is that spaces are best understood through the lens of algebraic
invariants. In the case of cohomology, this is a sequence of abelian groups thought of as encoding the
“holes” of the space in questions. The idea is that these cohomology groups often are easier to compute and
compare than topological spaces directly. In HoTT, the definition of cohomology groups is very compact:
given a type X and an abelian groups G, the nth cohomology group of X with coefficients in G is defined
by:

Hn(X,G) := ∥ X −→ K(G,n) ∥0
where K(G,n) denotes the n:th Eilenberg-MacLane space, which is defined using HITs following [6]. This
definition simplifies further when G = Z. In this case, for n > 0, the cohomology groups may be defined
by:

Hn(X,Z) := Hn(X) := ∥ X −→ ∥Sn∥n ∥0
Using only the Z case, it is already possible to distinguish many spaces, such as the n-sphere Sn, the real
and complex projective plan, RP 2 and CP 2, or the Klein Bottle K2 [2]. However, not all spaces can be
distinguished using cohomology groups alone. For instance, for all n : N and abelian groups G, we have a
group isomorphism Hn(CP 2, G) ∼= Hn(S2 ∨ S4, G).

Fortunately, the situation is often salvageable. Cohomology groups, when taken with coefficients in a
ring R, have additional structure when considered all together. Indeed, there is a graded multiplication
on cohomology groups called the cup product ⌣: Hi(X,R) → Hj(X,R) → Hi+j(X,R). Using the cup
product, it is possible to turn the direct sum of the groups into a ring (graded commutative when R is
commutative) called the cohomology ring:

H∗(X,R) :=
⊕
n:N

Hi(X,R)

The point is that this cohomology ring is an additional invariant and, indeed, spaces like CP 2, and
S2

∨
S4 have different cohomology rings and cannot be equivalent, even though all of their cohomology

groups are isomorphic.
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The main goal of the talk is to explain how to formalize them and how to compute those rings in the
framework of synthetic mathematics and homotopy type theory.

2 Contribution

Our primary contribution is the formalization of cohomology rings and computation of several concrete
examples. In the cases that we are interested in, cohomology rings can be expressed as a quotient of a
multivariate polynomial ring, for instance:

H∗(CP 2,Z) :=
⊕

n:N Hn(CP 2,Z) ∼= Z[X]/(X3)

H∗(S2
∨

S4,Z) :=
⊕

n:N Hn(S2
∨

S4,Z) ∼= Z[X,Y ]/(X2, XY, Y 2)

To do this, we have

(1) formalized a notion of direct sum practical enough to be able to deal with graded operations and to
define graded rings.

(2) formalized a practical notions of multivariate polynomials which are easy to map in and out of.

(3) formalized cohomology rings as an instance of (1), lifting the cup product to be defined over the
whole direct sum rather than just single instances of cohomology groups.

We had to main obstacles to overcome concerning formalization. Concerning (1), we have to stay
constructive as the entire framework is and we want to preserve the computational aspect of synthetic
mathematics. Concerning (2), the Cubical Agda library does not use tactics. As we do not wish to change
that, we can not rely on tactics to get us through bureaucratic details, which significantly complicates the
work.

3 Summary of the Talk

We will first discuss why trying to directly adapt the classical definition of the direct sum is not suitable
for our purposes. In the general case, the indexing set needs to have decidable equality for the direct
sum to be well-behaved. Moreover, even when the index is N, lifting a graded operation such as the cup
product to the direct sum is not that easy. The intensional feature of our language and type dependency
gets in the way and we quickly descend into transport hell.

We will see how, in order to circumvent these issues, we have used quotient inductive types (set
truncated HITs) to define the direct sum. These allow us to better lift graded operations to get graded
rings, and work for any indexing set — not just N. Using this definition, we will also show how, using the
SIP, it is possible to get around the very tedious proofs of the classical definition and how it yields a data
refinement problem in mathematics. Then how we can derive from the quotient inductive definition a
directly defined notion of multivariate polynomials.

Combining these notions, we will show how to calculate some ring isomorphisms. In particular, we will
show how the well chosen data structures enables us to only have to deal with the mathematical problems
of interest — algebraic topology — by avoiding much of the bureaucratic work that one often need to do
when formalizing.

Lastly, we will discuss the computation of cup products, which is needed in the computation of
cohomology rings. This should technically, in concrete cases, be entirely doable by normalization in
Cubical Agda, but in practice it is still limited as terms tend to blow up in size during normalization.
Nevertheless, we will discuss how it is already possible to use normalization to help us characterize the
cup product in some cases.
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