
Strictly Associative Group Theory using

Univalence

Alex Rice

March 26, 2023

Often when proving basic properties about groups, we end up proving equa-
tions using equational reasoning. Unfortunately when formalising this in a
proof assistant, most steps of the proof are for managing brackets and identities
around our expression, which is annoying to work with and obscures the actual
meaningful steps of the proof.

The usual approaches to these problems involve either putting up with the
problem, using a variety of tactics to make the manipulations less painful, or
having an array of helper lemmas. None of these methods mirror the approach
used in traditional mathematics where it would be very rare to see a bracket
written out in a proof.

As an example consider the following (cubical) Agda proof that proves that
the inverse of any element in some group G is unique:

InvUniqueLeft : ∀ {ℓ} (G : Group ℓ) → Type ℓ
InvUniqueLeft G = ∀ g h → h · g ≡ 1g → h ≡ inv g
where
open GroupStr (G .snd)

inv-unique-left : ∀ {ℓ} (G : Group ℓ) → InvUniqueLeft G
inv-unique-left G g h p =
h ≡⟨ sym (·IdR h) ⟩
h · 1g ≡⟨ cong (h ·) (sym (·InvR g)) ⟩
h · (g · inv g) ≡⟨ ·Assoc h g (inv g) ⟩
(h · g) · inv g ≡⟨ cong (· inv g) p ⟩
1g · inv g ≡⟨ ·IdL (inv g) ⟩
inv g
where
open GroupStr (G .snd)

Most of the proof above consists of bureaucracy of moving around brackets
and introducing and deleting identities.

In this work, we present an alternative solution. For every group G we
are able to find an isomorphic group for which associativity and unitality hold
judgmentally. This leverages Cayley’s Theorem, which states that every group is

1

isomorphic to a subgroup of a permutation group. By representing permutations
as functions, we are able to ensure that associativity and unitality hold “on the
nose”. I will discuss how this can be done and some of the challenges that one
faces.

This then allows us to use univalence to obtain that any group is not only
isomorphic but actually equal to a group with strict associativity and unitality,
which allows us to prove theorems about groups by only proving the theorems
for the strictified group. As an example the code above can be reduced to the
following:

inv-unique-left-strict : ∀ {ℓ} (G : Group ℓ) → InvUniqueLeft G
inv-unique-left-strict G = strictify InvUniqueLeft
λ g h p → begin
h ◦⌊⌋ ≈˘⌊ ·InvR′ g ⌋
⌊ h ◦ g ⌋◦ g −1 ≈⌊ p ⌋
g −1 ′

where
open import Groups.Reasoning G

Here we no longer need to explicitly introduce identities or move brackets around.
The simplicity of what remains also allows us to give equational reasoning tools
similar to those in the Agda standard library, while also removing the need to
use the cong function (note that the syntax is slightly different to avoid naming
clashes). The function strictify above transports the proof in the strict group
back to a proof for an arbitrary group.

In the strictified group the following equations hold definitionally:

• a(bc) = (ab)c,

• a1 = a = 1a,

• a−1−1
= a,

• and (fg)−1 = g−1 · f−1.

We believe this allows proofs about groups to be written in a more natural
way and that this work contains a novel way to use univalence to simplifying
standard mathematical proofs. The full code for this development can be found at
https://github.com/alexarice/GroupsUF. Although it is written in cubical
Agda, it does not rely on the computational properties of cubical, and should
work in any proof assistant with Univalence.

2

https://github.com/alexarice/GroupsUF

