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Abstract

Homotopy type theory (HoTT) is a handy language for reasoning
about an∞-topos. However, sometimes we have more than one∞-toposes
related to each other by some functors, in which case plain HoTT is not
sufficiently rich because the actions of the functors are not internalized.

In this talk, we consider a certain class of diagrams of ∞-toposes for
which plain HoTT remains a sufficiently rich internal language. We show
that a special form of an inverse diagram of ∞-toposes is reconstructed
internally to its oplax limit via lex modalities. Then plain HoTT as an
internal language of the oplax limit can be used for reasoning about the
original diagram.

1 Introduction

The goal of this note is as follows. Let I be a 2-category and X an I-indexed
∞-topos. When I is nice, X is reconstructed in an internal language of its oplax
limit.

Homotopy type theory (HoTT) [16] is an internal language of ∞-toposes [9].
However, it is not sufficiently rich for reasoning about diagrams of ∞-toposes,
because we need external reasoning to apply functors and natural transforma-
tions in the diagram.

Although proper extension of HoTT would be necessary for internal lan-
guages of general diagrams of ∞-toposes, plain HoTT is in some sense sufficient
for some special shapes of diagrams. A typical example is a diagram consisting
of two ∞-toposes and a lex, accessible functor between them in one direction.
The two ∞-toposes are subtoposes of another ∞-topos obtained by the Artin
gluing, and the functor is reconstructed by composing the inclusion from one
subtopos and the reflector to the other. Moreover, this reconstruction is inter-
nal to the glued ∞-topos, because subtoposes of an ∞-topos correspond to lex,
accessible modalities in its internal language. Hence, plain HoTT as an internal
language of the glued ∞-topos is sufficient to reason about the original diagram.

In this note, we generalize the observation in the previous paragraph. We
explain that a special form of inverse diagram of ∞-toposes and lex, accessible
functors between them is reconstructed internally to its oplax limit via lex,
accessible modalities.

1



1.1 Background and related work

This work is much influenced by Sterling’s synthetic Tait computability [14]
which uses modalities in extensional type theory as an internal language of
the glued 1-topos for a given functor between 1-toposes. This work is an ∞-
analogue and a generalization to more complex diagrams of ∞-toposes. In fact,
HoTT and ∞-toposes are more natural setting for lex, accessible modalities
than extensional type theory and 1-toposes. The generalization from the Artin
gluing to oplax limits of inverse diagrams is inspired by work by Shulman [13].

Sterling’s synthetic Tait computability is used for proving positive results
about type theories such as canonicity and normalization [15, 6]. A purpose of
this work is to develop a technique for proving similar positive results about
∞-type theories introduced by Nguyen and the author [10]; see [17] for some
ideas. We need a generalization of the Artin gluing to handle diagrams induced
by relative induction principles of Bocquet, Kaposi, and Sattler [3].

Modalities in HoTT and ∞-toposes are extensively studied by Rijke, Shul-
man, and Spitters [11] and Anel, Biedermann, Finster, and Joyal [1], respec-
tively. See also [5, 4, 18].

The fact that HoTT is an internal language of ∞-toposes is proved by rec-
tifying ∞-toposes. Shulman [12] showed that every ∞-topos is presented by
a well-behaved model category. The interpretation of HoTT in well-behaved
model categories is given by Arndt and Kapulkin [2] and Shulman [13], for
example.

Another possible approach to internal languages of diagrams of ∞-toposes is
to extend HoTT in a similar way to multimodal type theory [7] or extend multi-
modal type theory by univalence and higher inductive types. In this approach we
could handle more general diagrams of ∞-toposes, in particular adjunctions be-
tween ∞-toposes and (co)monads on ∞-toposes. However, more work is needed
to interpret multimodal type theory in diagrams of ∞-toposes because we have
to rectify not only ∞-toposes but also functors and natural transformations
between them.

2 Modalities in HoTT

We recall the definition of modalities in HoTT studied by Rijke, Shulman, and
Spitters [11]. We work in HoTT.

Definition 2.1. A modality m is a predicate Inm : U → Prop satisfying the
following axioms. Here, we define Um ≡ {A : U | Inm(A)}.

1. Inm is a reflective subuniverse: it has a reflector □m : U → Um and a unit
ηm :

∏
A:U A → □m A satisfying that the precomposition function

λf.f ◦ ηm(A) : (□m A → B) → (A → B)

is an equivalence for any A : U and B : Um.

2. Inm is closed under dependent pair types.
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A type satisfying Inm is called m-modal.

Definition 2.2. A modality m is accessible if it is “presented by small data”.

Definition 2.3. A modality m is lex if □m preserves finite limits.

Definition 2.4. LAM is an acronym for lex, accessible modality.

Theorem 2.5. Let X be an ∞-topos. The LAMs in the internal language of
X bijectively correspond to the subtoposes of X .

Remark 2.6. Modalities in ∞-toposes are extensively studied by Anel, Bieder-
mann, Finster, and Joyal [1]. Thanks to their results, the proof of Theorem 2.5
is almost straightforward. One non-trivial gap is the difference between type-
theoretic accessibility and category-theoretic accessibility.

3 Internal diagrams induced by modalities

Working in HoTT, we consider postulating some LAMs to encode a certain
diagram of subuniverses. The fundamental observation is that every pair of
LAMs induces a canonical functor between the subuniverses associated to them.

Construction 3.1. Let m and n be LAMs. We define a function □m
n : Um → Un

to be the restriction of □n to Um ⊂ U . It is a “functor” and preserves finite
limits.

Remark 3.2. Because defining the type of (∞, 1)-categories in HoTT is an open
problem, we do not know how to state that □m

n is a functor in HoTT. Never-
theless, we think of □m

n as a functor because we can construct the action of □m
n

on morphisms and prove every instance of coherence laws when needed.

We have two functors □m
n : Um → Un and □n

m : Un → Um for every pair of
LAMs m and n, but we are often interested in only one direction. It is thus
useful to cut off one direction.

Definition 3.3. Let m and n be LAMs. We write m ≤ ⊥n and say m is left
orthogonal to n if □n takes m-modal types to contractible types.

Remark 3.4. In [11], n is said to be strongly disjoint from m if m ≤ ⊥n.

If m ≤ ⊥n, then □m
n becomes constant at the unit type. The other direction

□n
m : Un → Um remains non-trivial. Therefore, a pair (m, n) of LAMs such that

m ≤ ⊥n encodes a diagram consisting of two ∞-toposes and a functor between
them in one direction. When both m ≤ ⊥n and n ≤ ⊥m are assumed, Um and
Un are considered unrelated.

Given more than two LAMs, we have canonical natural transformations
between the canonical functors.

Construction 3.5. Let m0,m1,m2 be LAMs. We define

ηm0;m2
m1

:
∏

A:Um2
□m2

m0
A → □m1

m0
□m2

m1
A
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by ηm0;m2
m1 (A) ≡ □m0 ηm1(A). This determines a “natural transformation”

ηm0;m2
m1

: □m2
m0

⇒ □m1
m0

□m2
m1

: Um2
→ Um0

.

Let m0,m1,m2,m3 be LAMs. By naturality, the following diagram com-
mutes.

□m3
m0

□m1
m0

□m3
m1

□m2
m0

□m3
m2

□m1
m0

□m2
m1

□m3
m2

η
m0;m3
m1

η
m0;m3
m2

□m1
m0

η
m1;m3
m2

η
m0;m2
m1

□m3
m2

For more than four LAMs, higher coherence laws are also satisfied. Hence,
a tuple (m0, . . . ,mn) of LAMs such that mi ≤ ⊥mj for all i < j encodes an
n-simplex with vertices Umi

, edges □mj
mi : Umj

→ Umi
for i < j, triangles

Umi Umk

Umj

□
mk
mj

□
mk
mi

η
mi;mk
mj

□
mj
mi

for i < j < k, and higher homotopies.
Shapes other than triangles are expressed by postulating invertibility of some

of ηmi;mk
mj . Let m0,m1,m2,m3 be LAMs and suppose that mi ≤ ⊥mj for all i < j.

We further assume that m2 ≤ ⊥m1 and that ηm0;m3
m1 is invertible. We have

Um1

Um0
Um3

Um2

□m1
m0

□m3
m1

□m3
m2

□m3
m0

η
m0;m3
m1

≃

η
m0;m3
m2

□m2
m0

which is equivalent to a diagram of the form

Um1

Um0 Um3 .

Um2

□m1
m0

□m3
m1

□m3
m2

□m2
m0
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4 Mode sketches

Based on the observation made in Section 3, we introduce mode sketches to
express shapes of diagrams of subuniverses. We work in HoTT.

Definition 4.1. A mode sketch M consists of the following data:

� a decidable finite poset IM;

� a (decidable) subset TM of triangles in IM. Triangles in TM are called
thin.

Here, by a decidable poset we mean a poset whose ordering relation ≤ is de-
cidable. Note that the identity relation i = j is equivalent to (i ≤ j) ∧ (j ≤ i)
and thus decidable. The strict ordering i < j defined as (i ≤ j) ∧ (i ̸= j) is
also decidable. By a triangle in IM we mean an ordered triple (i0 < i1 < i2) of
elements of IM.

Remark 4.2. The definition of mode sketches also makes sense in the metatheory.
Every mode sketch M in the metatheory can be encoded in type theory since it
is finite.

Remark 4.3. We think of a mode sketch M as a presentation of a (strict) 2-
category |M|: the 0-cells are the elements of M; the 1-cells are freely generated
by i → j for every i < j in M; the 2-cells are generated by

i1

i0 i2

for every i0 < i1 < i2 in M; such a 2-cell is made invertible when (i0 < i1 < i2)
is thin; for any chain i0 < i1 < · · · < in for n ≥ 3, the corresponding pasting
diagram is made commutative. Alternatively, one can think of a mode sketch
as a scaled simplicial set [8] or a stratified simplicial set [19], but the direction
of 2-cells is opposite to the standard one.

Remark 4.4. Since IM is finite, the underlying category of |M| is an inverse
category, that is, the relation i ≺ j defined by “there exists a non-identity
morphism j → i” is well-founded. The definition of mode sketches is possibly
generalized to allow infinite inverse posets.

Let M be a mode sketch and m : M → LAM a M-indexed family of LAMs.
We consider the following axioms.

Axiom A. m(i) ≤ ⊥m(j) for any j ̸≤ i in M.

Axiom B. For any triangle (i0 < i1 < i2) : TM, the natural transformation

η
m(i0);m(i2)
m(i1)

: □m(i2)
m(i0)

⇒ □m(i1)
m(i0)

□m(i2)
m(i1)

is invertible.

Axiom C. A type A : U is contractible whenever □m(i) A is contractible for
every i : M. (In other words, the top modality is the canonical join

∨
i:M m(i).)
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Remark 4.5. Axiom C is not so important in practical use but excludes models
other than our intended models. It is even better to work without Axiom C,
because Axioms A and B are stable under restriction to full sub-mode-sketches
while Axiom C is not.

Let M be a mode sketch and let m : M → LAM. Suppose m satisfies
Axioms A and B. Axiom A implies that m(i) ≤ ⊥m(j) whenever i < j, and thus

we have □m(j)
m(i) : Um(j) → Um(i). That is, the family of subuniverses λi.Um(i) is

equipped with a contravariant action of 1-cells of |M|. By the definition of the
2-cells of |M| and by Axiom B, λi.Um(i) is equipped with a contravariant action

of 2-cells of |M|. In this way, we think of m as a 2-functor from |M|op(1,2),
the 2-category obtained by reversing the directions of 1-cells and 2-cells, to the
(∞, 2)-category of (∞, 1)-categories.

Example 4.6. Let A[1] be

0 1.

Then m : A[1] → LAM consists of two LAMs m(0) and m(1). Axiom A asserts
that m(0) ≤ ⊥m(1). Axiom B is trivial. Assuming Axioms A and C, we can
show that m(1) is the open modality associated to the proposition □m(0) Empty
and that m(0) is the closed modality associated to □m(0) Empty. This also holds
without Axiom C in the sense that, assuming Axiom A, we have another LAM
n called the canonical join of m(0) and m(1), and m(0) and m(1) are closed
and open, respectively, modalities relative to the subuniverse Un. Therefore,
Axiom A gives an alternative formulation of synthetic Tait computability [14].

Remark 4.7. In Sterling’s synthetic Tait computability, a proposition P is postu-
lated and then the open modality oP and the closed modality cP are constructed.
This formulation is not stable under embedding of ∞-toposes. Let X ⊂ Y be an
embedding of ∞-toposes and P a proposition in the internal language of X . The
interpretations of the subuniverses UoP

and UcP in Y are different from those in
X . In contrast, our formulation is stable under embedding of ∞-toposes. Let
m : A[1] → LAM be a family of LAMs in the internal language of X satisfying
Axiom A. Um(i) is interpreted in X as a subtopos Xi ⊂ X , the interpretation of
Um(i) in Y is still Xi.

5 Semantics of mode sketches

We work in the metatheory.

Theorem 5.1. Let M be a mode sketch. We have an equivalence between the
following spaces.

1. ∞-toposes equipped with m : M → LAM in their internal languages satis-
fying Axioms A, B and C.

2. |M|-indexed diagrams of ∞-toposes and lex, accessible functors between
them.
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Moreover, the map from 2 to 1 is given by the oplax limit construction.

Example 5.2. Let A[1] = {0 → 1} (Example 4.6). A |A[1]|-indexed diagram of
∞-toposes and lex, accessible functors between them consists of two ∞-toposes
X0 and X1 and a lex, accessible functors F : X1 → X0. Its oplax limit is the
so-called Artin gluing Gl(F ) and defined by the pullback

Gl(F ) X→
0

X1 X0.

⌟
cod

F

In other words, Gl(F ) is the (∞, 1)-category of triples (A0, A1, f) consisting of
objects A0 ∈ X0 and A1 ∈ X1 and a map f : A0 → F (A1).

The projections Gl(F ) → X0 and Gl(F ) → X1 have fully faithful right
adjoints A0 7→ (A0,1, !) and A1 7→ (F (A1), A1, id), respectively, and exhibit
X0 and X1, respectively, as subtoposes of Gl(F ). Let m(i) be the LAM in the
internal language of Gl(F ) corresponding to Xi for i = 0, 1. Then m satisfies
Axioms A, B and C.

Conversely, let X be an ∞-topos equipped with a m : A[1] → LAM in its
internal language satisfying Axioms A, B and C. Let Xi be the subtoposes of X
corresponding to m(i) for i = 0, 1. We have a lex, accessible functor F : X1 → X0

by externalizing □m(1)
m(0). The fracture and gluing theorem [11, Corollary 3.52]

gives an equivalence

U ≃
∑

A0:Um(0)

∑
A1:Um(1)

A0 → □m(1)
m(0) A1

in the internal language of X . Externalizing it, we have an equivalence

X ≃ Gl(F ).

Definition 5.3. Let I be an (∞, 2)-category. By an I-indexed (∞, 1)-category
we mean a family of (∞, 1)-categories {Ci}i∈I equipped with contravariant ac-
tions of 1-cells and 2-cells in I.

Construction 5.4. Let I be an (∞, 2)-category and C an I-indexed (∞, 1)-
category. The oplax limit opLaxLimi∈I Ci is the (∞, 1)-category described as
follows. An object x of opLaxLimi∈I Ci consists of the following data:

� an object xi ∈ Ci for any object i ∈ I;

� a morphism xα : xi → xj · α for any morphism α : i → j in I;

� some coherence data.

A morphism x → y in opLaxLimi∈I Ci is a family of morphisms xi → yi for
i ∈ I equipped with some coherence data.
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Proof of Theorem 5.1. Let X be a |M|-indexed diagram of ∞-toposes and lex,
accessible functors between them. For every i ∈ M, the projection

opLaxLim
j∈M

Xj → Xi

exhibits Xi as a subtopos of opLaxLimj∈M Xj . This determines a function
m : M → LAM in the internal language of opLaxLimi∈M Xi satisfying Axioms A,
B and C.

Conversely, let X be an ∞-topos equipped with m : M → LAM in its internal
language satisfying Axioms A, B and C. Um(i)’s form a |M|-indexed diagram
of subuniverses. Iterating the fracture and gluing, one can see that U is the
oplax limit of Um(i)’s in the internal language. By externalization, we have
X ≃ opLaxLimi∈M Xi where Xi ⊂ X is the subtopos corresponding to m(i).

A Oplax limits

Theorem A.1. Let I be an (∞, 2)-category and X an I-indexed (∞, 1)-category.
Suppose:

� Xi is an ∞-topos for any object i ∈ I;

� Xj → Xi is lex and accessible for any morphism α : i → j in I.

Then opLaxLimi∈I Xi is an ∞-topos. Moreover, colimits and finite limits in
opLaxLimi∈I Xi are computed in

∏
i∈I Xi.

Proof. One can verify the case when I = {0 → 1}. For a general case, decompose
I into a colimit of cells and use the fact that the (∞, 1)-category of ∞-toposes
and lex, colimit-preserving functors between them are closed under limits of
(∞, 1)-categories [9, Proposition 6.3.2.3].
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