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maximilian.dore@cs.ox.ac.uk
University of Oxford

May 15, 2022

Recent years have seen the rise of applied topology, which aims to harness
methods developed in algebraic topology for the analysis of datasets. Given a
point cloud, a topological space is constructed which allows to study topological
features of the data. In Figure 1a we have depicted points in a metric space and
the associated Vietoris-Rips complex [8]. By computing algebraic invariants of
the complex such as the fundamental or first homology group we can detect that
all points of the dataset lie within a circle. However, computing such invari-
ants will be unnecessarily expensive as the complex contains many superfluous
triangulations. To address this problem, discrete Morse theory (DMT) [2] has
been developed, which allows to reduce the size of a complex while retaining its
topological features. At the heart of DMT is the notion of a simplicial collapse
[9], which characterizes under which circumstances a pair of faces of a complex
can be removed without changing the homotopy type of the complex.

(a) Vietoris-Rips complex on a dataset
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(b) The 3-simplex after a simplicial collapse

Figure 1

Consider Figure 1b, where have we have depicted a 3-simplex after perform-
ing an elementary collapse. Intuitively, the 2-dimensional triangle spanned by
2, 1 and 0 has been pushed inside the tetrahedron filler, resulting in a hollowed
out tetrahedron with one side missing. Both the 3-simplex and its collapse are
contractible and thereby have the same homotopy type.
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Discrete Morse theory characterizes which sequences of simplicial collapses
are admissible. Intuitively, we need to ensure that no sequence of collapses closes
any holes in the complex, which can be done with a certain acyclicity constraint
on the set of collapsed pairs. After performing all collapses we are left with a
smaller complex, called the Morse complex, which is in general not simplicial,
but a cell complex. For instance, if we did a Morse reduction on the complex
in Figure 1a with all faces but one part of a collapse, the Morse complex would
be a single point with a path to itself, i.e., the circle.

In this talk I will introduce a framework in Cubical Agda [7] in which discrete
Morse theory can be studied; and to prove an important first result towards its
full formalization: elementary simplicial collapses of standard simplices preserve
the homotopy type. In literature on discrete Morse theory, this fact is commonly
established by an appeal to topological intuition, see, e.g., [4, p. 22]. In order
to formalize this statement in a theorem prover, we need to have available a no-
tion of topological space. Since we are only interested in the homotopy type of
the Morse complex and do not need to reason on the level of homeomorphisms,
Cubical Agda [7] is up to this task: Cubical Agda takes literally the tenet of
homotopy type theory (HoTT) [6], which interprets types of intensional type
theory as homotopy types. Cubical Agda offers a primitive notion of space and
paths in a space, enabling novel ways of conducting arguments about topological
spaces, demonstrated for instance by [3, 1]. We will use this style of reasoning
to give a proof of the above statement (with respect to homotopy equivalence),
which is very combinatorial in flavour as we reason on the level of cubical sets.
Thereby our proof fits in nicely with the general approach of researchers in
discrete Morse theory, who prefer combinatorial reasoning over topological ar-
guments where possible [4, 5]. Our formalization is meant as a stepping stone to
formalize the main result of [4], who gives an explicit description of the homo-
topy type of the Morse complex in terms of the localized entrance-path category,
which is a certain category associated with cell complexes. This recent result
significantly refines traditional accounts of DMT [2], which only give way to
recover the homology groups of the Morse complex. To this end, we will give a
formalization of simplicial complexes and their entrance-path categories in this
paper, localization is left to future work.

The formalization of all results can be accessed at https://github.com/

maxdore/collapse.

References

[1] Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg. Synthetic
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[7] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: a de-
pendently typed programming language with univalence and higher induc-
tive types. Proceedings of the ACM on Programming Languages, 3(ICFP):1–
29, 2019. doi:10.1145/3341691.
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