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We define and study the Grothendieck AB axioms [4] for abelian (univalent) categories in
Homotopy Type Theory. Our main result is that categories of modules over a ring satisfy the
internal versions of axioms AB3 through AB5. We deduce this by proving more generally that
AB5 (which includes AB3, but not AB4) implies AB4, for any abelian category in HoTT. These
facts are all standard in ordinary homological algebra, but become more subtle in a constructive
setting such as ours. This work is part of an ongoing effort to develop homological algebra in
HoTT, with the goal of furthering the synthetic development of homotopy theory.

Background. In his seminal Tôhoku paper [4], Grothendieck developed homological algebra
in the abstract setting of abelian categories so as to unify the treatment of sheaf cohomology
over a space with the theory of derived functors on module categories. This made the tools of
homological algebra available in the setting of sheaves, as was needed by algebraic geometers
and others. These tools have since become standard in many branches of mathematics.

A tenet of this development is to work with abelian categories A satisfying additional prop-
erties called the AB axioms.1 We discuss three:

(AB3) for a small set X, the coproduct
⊕

X A of any family A : X → A of objects in A exists;
(AB4) AB3 holds, and the coproduct functor

⊕
X : A X → A is exact for any small set X;

(AB5) AB3 holds, and filtered colimits in A are exact.

Abelian categories that satisfy AB3–5 and have a generator are nowadays called Grothendieck
categories. Examples are modules over a ring as well as sheaves of OX -modules.

However there are interesting abelian categories in the wild that fail to be Grothendieck.
For example categories of constructible sheaves, or modules over a ring in an elementary topos.
Neither of these examples have arbitrary coproducts (AB3) in general. For the latter, simply
consider a non-cocomplete elementary topos such as finite sets.

Apart from their intrinsic interest, tools developed in internal homological algebra apply in
the generality of both of the given examples via the internal language of a topos. Such tools
have been developed by Harting [5] and more recently by Blechschmidt [2, 1]. In addition,
constructive accounts—of which there are too many to mention—also feed into the internal
development by translating them into the internal language.

In HoTT, the basics of abelian precategories have previously been formalised in the UniMath
library [8].

Results. The AB axioms as phrased above can be interpreted directly into HoTT, with filtered
categories defined in the obvious way. A stepping stone to our main results is the following,
whose proof is a careful translation and slight generalisation of [3, Theorem 2.13.4].

Proposition. Filtered colimits of sets commute with finitely generated limits.

This result is usually stated for finite limits, which is also all we need below. We omit the
definition of ‘finitely generated’ here, but an interesting corollary is that taking fixed points of
G-sets for a f.g. group G commutes with filtered colimits.

There are various ways of seeing that module categories are cocomplete and therefore satisfy
AB3. Since filtered colimits of modules can be computed on the underlying sets, the proposition
implies that module categories satisfy AB5 as well. It remains to discuss AB4.
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1Our account of the AB axioms is borrowed from the Stacks project (079A) which differs slightly from [4].

https://stacks.math.columbia.edu/tag/079A


Classically, we often define the coproduct
⊕

X A of a family of modules to be the finitely
supported elements inside the product ΠXA. It then follows that

⊕
X is exact. However, in our

setting there may be no nontrivial maps
⊕

X A → ΠXA. Nevertheless, we show the following:

Theorem. Let A be an abelian category satisfying AB5, and let X be a small type. The functor
colimX : A X → A preserves products. If X is a set, then the coproduct

⊕
X ≡ colimX is exact.

In particular, AB5 implies AB4.

Semantically, colimX yields a left adjoint to base change of modules over X. The theorem
has applications to the semantics of injectivity, briefly discussed below.

In ordinary homological algebra one proves that AB5 implies AB4 by replacing a set-indexed
family A : X → A by a diagram on the finite subsets of X, which is filtered. Constructively,
however, neither the finite ordered subsets nor the Bishop-finite subsets of X form filtered
categories. Roughly, the reason is that these are not closed under unions. Instead we work with
ordered finite sub-multisets, which do form a filtered category. This approach is inspired by
Harting’s construction of the internal coproduct [5] of abelian groups in an elementary topos.

Grothendieck categories in HoTT are abelian categories which satisfy AB3 through AB5 and
have a specified generator. Since module categories are cocomplete and satisfy AB5, we deduce:

Corollary. Let R be a ring. The category of R-modules is Grothendieck.

On the previous page, we saw that a category of modules in an elementary topos E may not
externally be Grothendieck. In particular, if E is not cocomplete then one should not expect
AB3 to hold. However, any elementary topos is internally cocomplete, and for this reason a
category of modules in E does satisfy AB3 internally. Thus working internally repairs, in some
sense, certain defects of the external approach.

These results are being formalised in the Coq HoTT library [7].

Applications. Some theorems about Grothendieck categories in ordinary homological algebra,
such as the fact that they have enough injectives, are nonconstructive. Even so, we hope that
parts of the ordinary theory will go through, or have important analogues, constructively.

Exactness of coproducts (AB4) in the elementary setting [5] was key to understanding the
relation between external, local, and internal notions of injectivity [6, 2]. We were lead to study
AB4 for module categories in order to understand the semantics of injectivity in HoTT, which
in turn has applications to the semantics of Ext groups. The latter we have studied with Dan
Christensen with the goal of proving a universal coefficient theorem.
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