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The BHK interpretation is an informal, constructive explanation of logical formulas:
it prescribes what counts as evidence for (or a proof of, or a witness to) a given formula.
Realizability interpretations are said to formalize the BHK interpretation, realizers playing
the role of evidence.

The first realizability interpretation, Kleene’s number realizability [Kle45] formally bridges
the theory of Heyting arithmetic and that of computable functions. Realizability categories
constitute universes for computable mathematics—computable with respect to the realizability
structure that the category is built upon. Hyland’s effective topos Eff [Hyl82], probably the
most famous example of a realizability category, is constructed from Kleene’s first algebra
K1, and its internal logic extends Kleene’s number realizability. More generally, one most
often sees realizability categories built over partial combinatory algebras (PCAs, models of
untyped computation, of which K1 is an example); realizers in this setting are computational
or algorithmic in nature. That being said, one may perform realizability constructions over dif-
ferent structures, such as typed PCAs [Lon99], algebraic lattices [BBS04] and even categories
[Bir00, RR01].

Realizability toposes such as Eff are, of course, able to model dependent type theory. But
for this purpose one can work with subcategories of assemblies (over a PCA), which have an
elementary presentation. Further subcategories of modest sets (wherein elements are deter-
mined uniquely by realizers)—equivalently, partial equivalence relations (PERs)—give rise to
impredicative universes (closed under “large" products, cf. [Hyl88]). Realizability toposes can
actually be constructed as exact completions of categories of assemblies, which themselves
arise as regular completions of categories of partitioned assemblies [CFS88, Men00].

Recent work on realizabilty in the context of intensional type theory (ITT) or homotopy type
theory (HoTT) has been motivated by the search for impredicative and univalent universes
of higher homotopy types. The most well studied approach is that of cubical assemblies. In
particular, Uemura [Uem19] constructs a model of HoTT in cubical objects valued in assemblies
over K1 that contains an impredicative and univalent universe refuting propositional resizing.
Interestingly, Uemura states that realizers in this model “seem to play no role in its internal
cubical type theory" (p. 16).

Aside from cubical assemblies, Hofstra and Warren [HW13] equip the syntax of 1-truncated
ITT with a notion of realizability , which allows them to show that the syntactic groupoid
associated to the type theory generated by a graph has the same homotopy type as the free
groupoid on this graph. Moreover, van den Berg [van20] exhibits the effective topos as a
path category in which there is an impredicative and univalent universe of propositions
satisfying propositional resizing (this models a type theory in which all computation rules are
propositional).

We seek to develop realizability models of ITT and (book-style) HoTT in which realizers
themselves carry higher-dimensional structure. This is in contrast to the cubical assemblies
approaches, where realizers come from the same kind of thing as in traditional, set-based
realizability. We take the assemblies approach to realizability categories, equipping the
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Hofmann-Streicher groupoid model [HS98] with a notion of realizability analogous to how
traditional categories of assemblies do so for the set model.

Realizers derive from a “realizer category" C containing an interval I qua co-groupoid.
The interval facilitates a notion of homotopy internal to C as well as a fundamental groupoid
construction Π = (−)I : C→ Gpd. Thus in a “groupoidal assembly", objects of the underlying
groupoid are realized by points in some fundamental groupoid and isomorphisms in the under-
lying groupoid are realized by paths in the fundamental groupoid. This may be understood
as formalizing an extension/modification of the BHK interpretation whereby evidence for an
identification of two objects is a path between them (as explained in [Uni13]). Functors be-
tween groupoidal assemblies are realized by maps in C, with natural transformations realized
by homotopies in C. An instructive example of a realizer category is Ho(Top2), the category of
space-subspace pairs and homotopy classes of continuous maps (we must quotient in order
that I = [0,1] satisfies the axioms of an interval on the nose)—which is not a cartesian closed
category, let alone locally cartesian closed. We obtain a theory wherein realizers play no role
in the higher-dimensional structure of the model by choosing a discrete interval.

One approach to model identity types is to require the realizability relation to behave like
a Grothendieck fibration. This means positing extra structure on the realizer category in order
to model function spaces. It is possible to construct an impredicative universe of “modest
groupoids" in this setting, via the relationship with generalized congruences [BBP99]—these
are gadgets by which one can take the quotient of a category, identifying objects as well as
morphisms, and play the role traditionally played by PERs. In order to do this, we first posit a
universal object U ∈C to make the typed notion of realizability provided by C into an untyped
one [Bir00, LS02].

However, the extra structure required to reconcile identity types and function spaces
prohibits our main would-be example of an untyped realizer category from being a genuine
example. The category in question is SCC, that of Scott continuous categories [Ad7], which are
a categorification of Scott domains [Sco82]. Thus we will finish by describing work in progress
on an approach to groupoidal realizability via partitioned assemblies that aims to admit SCC
as an example of a realizer category.
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