A Yoneda lemma-formulation of the univalence axiom

Josif Petrakis

University of Munich

HoTT/UF 2018 Oxford, 08.07.2018

The question we try to answer

How can one explain UA in more standard mathematical terms?

Previous work on which we are based

Rijke 2012: he gave a type-theoretic formulation of Yoneda lemma and constructed it from Martin-Löf's *J*-rule and the function extensionality axiom.

Escardó 2015: he took Rijke's type-theoretic formulation of Yoneda lemma as primitive and constructed Martin-Löf's *J*-rule from it so that its computation rule holds definitionally.

Coquand 2014: he reduced the *J*-rule to transport and the contractibility of singleton types.

What we do here

We give a Yoneda lemma-formulation (sY-UA) of Voevodsky's axiom of univalence (UA) in informal UTT.

Although the computation rules of UA hold propositionally, the computation rules of sY-UA hold definitionally.

$$J: \prod_{C:\prod_{x,y:\ A}\prod_{p:\ x=_{A}y}\mathcal{U}} \prod_{c:\prod_{x:\ A}C(x,x,\mathtt{refl}_x)} \prod_{x,y:\ A} \prod_{p:\ x=_{A}y} C(x,y,p)$$

$$J(C, c, x, x, refl_x) \equiv c(x), \quad x: A$$

LeastRefl:
$$\prod_{R:A\to A\to \mathcal{U}} \prod_{r:\prod_{x:A}} \prod_{R(x,x)} \prod_{x,y:A} \prod_{p:X=Ay} R(x,y),$$

$$\texttt{LeastRefl}(R, r, x, x, \texttt{refl}_x) \equiv r(x), \quad x \colon A.$$

Transport:
$$\prod_{P:A \to \mathcal{U}} \prod_{x,y: A} \prod_{p: x = ay} (P(x) \to P(y))$$

$$Transport(P, x, x, refl_x) \equiv id_{P(x)}, x: A.$$

$$j:\prod_{a:A}\prod_{C:\prod_{x:A}\prod_{p:a=A^{\chi}}\mathcal{U}}\prod_{c:C(a,\mathtt{refl}_a)}\prod_{x:A}\prod_{p:a=A^{\chi}}C(x,p)$$
 $j(a,C,c,a,\mathtt{refl}_a)\equiv c$
 $leastrefl:\prod_{a:A}\prod_{R_a:A\to\mathcal{U}}\prod_{r_a:R_a(a)}\prod_{x:A}\prod_{p:a=A^{\chi}}R_a(x)$
 $leastrefl(a,R_a,r_a,a,\mathtt{refl}_a)\equiv r_a,$
 $transport:\prod_{a:A}\prod_{P:A\to\mathcal{U}}\prod_{x:A}\prod_{p:a=A^{\chi}}(P(a)\to P(x))$
 $transport(a,P,a,\mathtt{refl}_a)\equiv id_{P(a)}.$

The J-judgement and the J-computation rule imply the following M-judgement and M-computation rule, respectively,

$$M: \prod_{a,x:A} \prod_{p:a=A^{x}} (a, refl_{a}) =_{E_{a}} (x, p)$$

$$M(a, a, refl_a) \equiv refl_{(a, refl_a)},$$

where

$$E_a \equiv \sum_{x: A} (a =_A x).$$

Similarly we get that the j-judgement and the j-computation rule imply the following m-judgement and m-computation rule, respectively,

$$m:\prod_{a:A}\prod_{u:F_2}(a, refl_a)=_{E_a}u$$

$$m_a\bigg((a, \mathtt{refl}_a)\bigg) \equiv \mathtt{refl}_{(a,\mathtt{refl}_a)},$$

where $m_a \equiv m(a)$.



The following two judgements

$$m_a: \prod_{u:E_a} (a, refl_a) =_{E_a} u$$

$$\mathtt{transport}_{\mathsf{a}}: \prod_{P:A \to \mathcal{U}} \prod_{\mathsf{X}: A} \prod_{\mathsf{P}:\mathsf{a}=_{\mathsf{A}}\mathsf{X}} (P(\mathsf{a}) \to P(\mathsf{X}))$$

imply the judgement

$$j_a:\prod_{C:\prod_{x:\ A}\prod_{p:a=_{A^X}}\mathcal{U}}\prod_{c:C(a,\mathtt{refl}_a)}\prod_{x:\ A}\prod_{p:a=_{A^X}}C(x,p)$$

and the same holds for their corresponding computation rules.

[Coquand, 2014] The following judgements and corresponding computation rules are equivalent:

- (i) J.
- (ii) Transport and M.
- (iii) LeastRefl and M.

Yoneda lemma

 $\mathcal C$ a locally small category : $\mathsf{Hom}_{\mathcal C}(A,B) \equiv \{f \in \mathcal C_1 \mid f \colon A \to B\}$ is a set

 $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$ the category of contravariant set-valued functors on \mathcal{C} If $C \in \mathcal{C}_0$ and $F \in \mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$, there is an isomorphism

$$\mathsf{Hom}_{\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}}(\mathcal{Y}(C),F)\simeq F(C),$$

which is natural in both F and C, where

$$\mathcal{Y}:\mathcal{C} o \mathsf{Set}^{\mathcal{C}^\mathrm{op}}$$

is the Yoneda embedding i.e., the functor

$$\mathcal{Y}(C) \equiv \mathsf{Hom}_{\mathcal{C}}(-,C) : \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$$

$$\mathcal{Y}(f:C\to C')\equiv \mathsf{Hom}_{\mathcal{C}}(-,f):\mathsf{Hom}_{\mathcal{C}}(-,C)\to \mathsf{Hom}_{\mathcal{C}}(-,C')$$

defined post-compositionally.

Through the Yoneda lemma the Yoneda embedding is shown to be an embedding i.e., an injective on objects, faithful, and full functor.

Rijke's type-theoretic interpretation of the Yoneda embedding

 $A:\mathcal{U}$ as a locally small category equal to its opposite, $\mathsf{Hom}(a,b)\equiv a=_A b:\mathcal{U}$

 ${\cal U}$ is closed under exponentiation, as ${f Set}$

 $P:A \to \mathcal{U}$ as an element of \mathcal{U}^A , which corresponds to $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$

$$\mathcal{Y}_{a}:A\to\mathcal{U}$$

$$\mathcal{Y}(a)(x)\equiv x=_{A}a,$$

$$\mathsf{Hom}(P,Q)\equiv\prod_{x:A}\left(P(x)\to Q(x)\right)$$

$$\mathsf{Hom}(\mathcal{Y}(a),P)\equiv\prod_{x:A}\left(\mathcal{Y}(a)(x)\to P(x)\right)\equiv\prod_{x:A}\left((x=_{A}a)\to P(x)\right)$$

$$\equiv\prod_{x:A}\prod_{p:x=_{A}a}P(x).$$

 $\mathcal{Y}: A \to (A \to \mathcal{U})$

Theorem (Yoneda lemma in ITT + Function extensionality (Rijke, 2012))

Let $P: A \rightarrow \mathcal{U}$ and a: A. There is a pair of quasi-inverses

$$(j,i)$$
: Hom $(\mathcal{Y}(a),P) \simeq P(a)$

i.e.,

$$(j \circ i)(u) = u, \quad u : P(a),$$

 $(i \circ j)(\sigma) = \sigma, \quad \sigma : \prod_{x : A} \prod_{p:x=A} P(x)$

such that

$$i(u)(a, \text{refl}_a) \equiv u, \quad u : P(a),$$

 $j(\sigma) \equiv \sigma(a, \text{refl}_a), \quad \sigma : \prod_{x : A} \prod_{p: x = a} P(x).$

The \mathcal{Y} -judgement implies the introduction rule of the equality type i.e., the inhabitedness of the type $a =_A a$, for every a : A.

Proof.

If a: A, and if we consider as P in the type-theoretic Yoneda lemma the type family $\mathcal{Y}(a)$, then

$$\mathsf{Hom}(\mathcal{Y}(a),\mathcal{Y}(a)) \equiv \left(\prod_{x \colon A} \prod_{p: x=_A a} x =_A a\right) \simeq (a =_A a) \equiv \mathcal{Y}(a).$$

The only element of $\operatorname{Hom}(\mathcal{Y}(a),\mathcal{Y}(a))$ we can determine at this point is

$$R \equiv \lambda(x: A, p: x =_A a).p$$

and
$$j(R)$$
: $a =_A a$.

The \mathcal{Y} -judgement implies the Transport-judgement and the left \mathcal{Y} -computation rule implies the Transport-rule.

Lemma (Escardó)

If $B:\mathcal{U}$, the \mathcal{Y} -judgement and the \mathcal{Y} -computation rules imply the following judgement and corresponding computation rules:

$$(j,i): \left(\prod_{x:\ A}\prod_{p:x=_Aa}B\right)\simeq B$$
 $i(b)(a, \text{refl}_a)\equiv b, \quad b:B,$ $j(\sigma)\equiv\sigma(a, \text{refl}_a), \quad \sigma:\prod_{x:\ A}\prod_{p:x=_Aa}B$

Moreover, if b: B, x: A, and $p: x =_A a$, then

$$i(b)(x,p) =_B b.$$

Corollary (Escardó)

The \mathcal{Y} -judgement with the \mathcal{Y} -computation rules imply the M-judgement.

The next theorem is shown without the use of function extensionality.

Theorem (Escardó, 2015)

The J-judgement and the J-computation rule follow from the \mathcal{Y} -judgement and the \mathcal{Y} -computation rules.

The univalence axiom asserts that the function $\mbox{IdtoEqv}(X): X =_{\mathcal{U}} A \to X \simeq_{\mathcal{U}} A \mbox{ is an equivalence with quasi-inverse the function } \mbox{ua}(X): X \simeq_{\mathcal{U}} A \to X =_{\mathcal{U}} A.$

Voevodsky's Axiom of Univalence (UA): There are the following ua-judgement and the right and left ua-computation rules, respectively,

$$ext{ua}:\prod_{X:\mathcal{U}}\prod_{e:X\simeq_{\mathcal{U}}A}X=_{\mathcal{U}}A$$
 $ext{ua}(X, ext{IdtoEqv}(X,p))=p, \quad p:X=_{\mathcal{U}}A,$ $ext{[IdtoEqv}(X, ext{ua}(e))]^*(x)=e^*(x), \quad x:X.$

$$IdtoEqv(ua(f), x) = f(x),$$

where the equivalence e is "identified" with $f \equiv e^*$

$$ua(A, (id_A, e_A)) = refl_A.$$

The "categorical" interpretation

 $\mathcal U$ as a locally small category equal to its opposite, $\operatorname{Hom}(A,B)\equiv A\simeq_{\mathcal U} B:\mathcal U$

 \mathcal{U}' , the next universe to \mathcal{U} , as **Set**

 $P:\mathcal{U}\to\mathcal{U}'$ as an element of $\mathcal{U}'^\mathcal{U}$, which corresponds to $\mathbf{Set}^{\mathcal{C}^{\mathrm{op}}}$

$$\mathcal{E}: \mathcal{U} \to (\mathcal{U} \to \mathcal{U}')$$
 $\mathcal{E}_A(X) \equiv X \simeq_{\mathcal{U}} A,$
 $e: A \simeq_{\mathcal{U}} B$
 $\mathcal{E}(e): \operatorname{Hom}(\mathcal{E}_A, \mathcal{E}_B) \equiv \prod_{X: \mathcal{U}} \prod_{e': X \simeq_{\mathcal{U}} A} X \simeq_{\mathcal{U}} B$
 $\mathcal{E}(e) \equiv \lambda(X: \mathcal{U}, e': X \simeq_{\mathcal{U}} A). e \circ e'.$

Yoneda-version of the univalence axiom (Y-UA): Let $P: \mathcal{U} \to \mathcal{U}'$ and $A: \mathcal{U}$. There is a pair of quasi-inverses

$$(j,i)$$
: Hom $(\mathcal{E}_A,P)\simeq P(A)$

i.e., there are the following i-judgment and j-judgment:

$$i: P(A) \to \prod_{X:\mathcal{U}} \prod_{e: X \simeq_{\mathcal{U}} A} P(X)$$

$$j: \left(\prod_{X:\mathcal{U}}\prod_{e:X\sim_{\mathcal{U}}A}P(X)\right)\to P(A)$$

with the following *i*-computation rule and *j*-computation rule:

$$i(u)(A, (\mathrm{id}_A, e_A)) \equiv u, \quad u : P(A),$$

 $j(\sigma) \equiv \sigma(A, (\mathrm{id}_A, e_A)), \quad \sigma : \mathrm{Hom}(\mathcal{E}_A, P).$

The i-judgement of Y-UA implies the ua-judgement i.e., there is

$$ua': \prod_{X:\mathcal{U}} \prod_{e:X\simeq_{\mathcal{U}} A} X =_{\mathcal{U}} A,$$

$$ua'(A,(id_A,e_A)) \equiv refl_A.$$

Proof.

Let $P: \mathcal{U} \to \mathcal{U}'$ defined by $P(X) \equiv X =_{\mathcal{U}} A$. Since

$$i: A =_{\mathcal{U}} A \to \prod_{X:\mathcal{U}} \prod_{e: X \simeq_{\mathcal{U}} A} X =_{\mathcal{U}} A,$$

$$ua' \equiv \lambda(X : \mathcal{U}, e : X \simeq_{\mathcal{U}} A).i(refl_A)(X, e),$$

hence

$$\operatorname{ua}'(A,(\operatorname{id}_A,e_A))\equiv i(\operatorname{refl}_A)(A,(\operatorname{id}_A,e_A))\equiv\operatorname{refl}_A.$$

If
$$X: \mathcal{U}$$
 and $p: X =_{\mathcal{U}} A$, then
$$ua'(X, IdtoEqv(X, p)) = p.$$

Proof.

Define
$$C(X, p) \equiv ua'(X, IdtoEqv(X, p)) = p$$
. Since

$$egin{aligned} \mathcal{C}(A, \mathtt{refl}_A) &\equiv \mathtt{ua}'(A, \mathtt{IdtoEqv}(A, \mathtt{refl}_A)) = \mathtt{refl}_A \ &\equiv \mathtt{ua}'(A, (\mathrm{id}_A, e_A)) = \mathtt{refl}_A \ &\equiv \mathtt{refl}_A = \mathtt{refl}_A. \end{aligned}$$

we use the j_A -judgment.

The ua-judgement implies the i-judgement of Y-UA i.e., there is

$$i': P(A) \to \prod_{X:\mathcal{U}} \prod_{e: X \simeq_{\mathcal{U}} A} P(X),$$

and moreover

$$i'(u)(A, (\mathrm{id}_A, e_A)) = u, \quad u : P(A).$$

Proof.

Let u: P(A). Since $ua(X, e): X =_{\mathcal{U}} A$, we get $ua(X, e)^{-1}: A =_{\mathcal{U}} X$, and consequently we have that

$$\left[\operatorname{ua}(X,e)^{-1}\right]_*^P:P(A)\to P(X).$$

We define

$$i'(u) \equiv \lambda(X : \mathcal{U}, e : X \simeq_{\mathcal{U}} A). [ua(X, e)^{-1}]_*^P(u).$$

Thus,

$$i'(u)(A, (\mathrm{id}_A, e_A)) \equiv [\mathrm{ua}(A, (\mathrm{id}_A, e_A))^{-1}]_*^P(u)$$

$$= (\mathrm{refl}_A^{-1})_*^P(u)$$

$$\equiv (\mathrm{refl}_A)_*^P(u)$$

$$\equiv \mathrm{id}_{P(A)}(u)$$

$$\equiv u.$$

Our aim is to get from a strong Yoneda version of the axiom of univalence the *J*-judgement that corresponds to it equipped with a computation rule that involves judgemental equality.

Let $A, B: \mathcal{U}$ and $Q: A \to B \to \mathcal{U}'$ a type family over A and B (or a relation on A, B). If

$$F, G: \prod_{x:A} \prod_{y:B} Q(x,y),$$

we say that F, G are **homotopic**, $F \approx B$, if there is

$$H: F \approx B \equiv \prod_{x:A} \prod_{y:B} F(x,y) =_{Q(x,y)} G(x,y).$$

Let $A: \mathcal{U}$ and $P: \mathcal{U} \to \mathcal{U}'$. If we fix some

$$\sigma$$
: Hom $(\mathcal{E}_A, P) \equiv \prod_{X:\mathcal{U}} \prod_{f:X\simeq A} P(X),$

there is a term

$$\begin{split} \operatorname{Happly}_{\mathcal{E},\sigma} : & \prod_{\tau \in \operatorname{Hom}(\mathcal{E}_A,P)} \prod_{p:\tau = \sigma} \tau \approx \sigma \equiv \\ & \equiv \prod_{\tau \in \operatorname{Hom}(\mathcal{E}_A,P)} \prod_{p:\tau = \sigma} \left(\prod_{X:\mathcal{U}} \prod_{f:X \simeq A} \tau(X,f) =_{P(X)} \sigma(X,f) \right) \\ \operatorname{Happly}_{\mathcal{E},\sigma}(\sigma,\operatorname{refl}_\sigma) & \equiv \lambda(X:\mathcal{U},f:X \simeq A).\operatorname{refl}_{\sigma(X,f)}, \end{split}$$

Proof.

If
$$C(\tau, p) \equiv \tau \approx \sigma$$
, then $C(\sigma, \text{refl}_{\sigma}) \equiv \sigma \approx \sigma$ and $\lambda(X : \mathcal{U}, f : X \simeq A).\text{refl}_{\sigma(X, f)} : C(\sigma, \text{refl}_{\sigma})$.

Strong Yoneda-version of the univalence axiom (sY-UA): Let

 $A: \mathcal{U}$ and $P: \mathcal{U} \to \mathcal{U}'$. There is a pair of quasi-inverses

$$i: P(A) \to \prod_{X:\mathcal{U}} \prod_{f:X \simeq A} P(X),$$

$$j: \left(\prod_{X:\mathcal{U}}\prod_{f:X\simeq A}P(X)\right)\to P(A),$$

equipped with the following i and j-computation rule:

$$i(u)(A, id_A) \equiv u, \quad u : P(A),$$

 $j(\sigma) \equiv \sigma(A, id_A), \quad \sigma : \text{Hom}(\mathcal{E}_A, P).$

Moreover, there are terms

$$G: i \circ j \sim \mathrm{id}_{\mathsf{Hom}(\mathcal{E}_A, P)} \equiv \prod_{\sigma \in \mathsf{Hom}(\mathcal{E}_A, P)} i(j(\sigma)) = \sigma,$$

$$H: j \circ i \sim \mathrm{id}_{P(A)} \equiv \prod_{u: P(A)} j(i(u)) = u,$$

$$\mathtt{Happly}_{\mathcal{E},\sigma}\big(\mathit{i}(\mathit{j}(\sigma)),\mathit{G}(\sigma)\big)(A,\mathrm{id}_{A}) \equiv \mathtt{refl}_{\sigma(A,\mathrm{id}_{A})}, \ \ \sigma : \mathsf{Hom}(\mathcal{E}_{A},P),$$

$$H(u) \equiv \text{refl}_u, \quad u: P(A).$$

Since

$$G(\sigma): i(j(\sigma)) = \sigma,$$

we have that

$$\operatorname{Happly}_{\mathcal{E},\sigma}\big(i(j(\sigma)),\,G(\sigma)\big):\prod_{X:\mathcal{U}}\prod_{f:X\simeq A}i(j(\sigma))(X,f)=_{P(X)}\sigma(X,f),$$

 $\mathtt{Happly}_{\mathcal{E},\sigma}\big(i(j(\sigma)),\,G(\sigma)\big)(A,\mathrm{id}_A):i(j(\sigma))(A,\mathrm{id}_A)=_{P(A)}\sigma(A,\mathrm{id}_A).$

By the j, i-computation rules we have that

$$i(j(\sigma))(A, \mathrm{id}_A) \equiv i(\sigma(A, \mathrm{id}_A))(A, \mathrm{id}_A) \equiv \sigma(A, \mathrm{id}_A),$$

therefore

$$\operatorname{Happly}_{\mathcal{E},\sigma}\big(i(j(\sigma)),\,G(\sigma)\big)(A,\operatorname{id}_A):\sigma(A,\operatorname{id}_A)=_{P(A)}\sigma(A,\operatorname{id}_A).$$

Similarly, if u : P(A),

$$H(u): j(i(u)) = u,$$

and since

$$j(i(u)) \equiv i(u)(A, \mathrm{id}_A) \equiv u,$$

we get

$$H(u): u =_{P(A)} u.$$

Lemma

If $B: \mathcal{U}$, the strong Yoneda-judgements and the corresponding computation rules imply the following judgement and computation rules:

$$(j_{B}, i_{B}) : \left(\prod_{X:\mathcal{U}} \prod_{f:X \simeq A} B \right) \simeq B$$

$$i_{B} : B \to \prod_{X:\mathcal{U}} \prod_{f:X \simeq A} B,$$

$$j_{B} : \left(\prod_{X:\mathcal{U}} \prod_{f:X \simeq A} B \right) \to B,$$

$$i_{B}(b)(A, \mathrm{id}_{A}) \equiv b, \quad b : B,$$

$$j_{B}(\sigma) \equiv \sigma(A, \mathrm{id}_{A}), \quad \sigma : \prod_{X:\mathcal{U}} \prod_{f:X \simeq A} B,$$

$$G_{B} : \prod_{\sigma \in \mathsf{Hom}(\mathcal{E}_{A}, B)} i_{B}(j_{B}(\sigma)) = \sigma,$$

Lemma

$$H_B: \prod_{b \in B} j(i(b)) = b,$$

$$\mathtt{Happly}_{\mathcal{E},\sigma}\bigg(i_B(j_B(\sigma)),\, G_B(\sigma)\bigg)(A,\mathrm{id}_A) \equiv \mathtt{refl}_{\sigma(A,\mathrm{id}_A)}, \quad \sigma: \mathsf{Hom}(\mathcal{E}_A,B),$$

 $H_B(b) \equiv \text{refl}_b, b: B.$

Moreover, if $b: B, X: \mathcal{U}$ and $f: X \simeq A$, then, if

$$[\sigma_b \equiv \lambda(X : \mathcal{U}, f : X \simeq A).b] : \prod_{X : \mathcal{U}} \prod_{f : X \simeq A} B,$$

we have that

$$\operatorname{Happly}_{\mathcal{E},\sigma_b}\bigg(i_B(j_B(\sigma_b)),\,G_B(\sigma_b)\bigg)(X,f):\big[i_B(b)(X,f)=_Bb\big],$$

$$\mathtt{Happly}_{\mathcal{E},\sigma_b}\Big(i_B(j_B(\sigma_b)), G_B(\sigma_b)\Big)(A,\mathrm{id}_A) \equiv \mathtt{refl}_b.$$

Corollary

lf

$$E_A \equiv \sum_{X:\mathcal{U}} X \simeq A,$$

the judgements and computational rules of the strong Yoneda-version of UA imply the following $M_{\rm e}$ -judgement and $M_{\rm e}$ -computation rule:

$$M_e: \prod_{X:\mathcal{U}} \prod_{f:X \simeq A} (X,f) =_{E_A} (A,\mathrm{id}_A),$$

$$M_e(A, \mathrm{id}_A) \equiv \mathtt{refl}_{(A, \mathrm{id}_A)}.$$

We call the following judgment and computation rule

$$J_e: \prod_{C:\prod_{X:\mathcal{U}}\prod_{f:X\simeq A}\mathcal{U}} \prod_{c:C(A,\mathrm{id}_A)} \left(\prod_{X:\mathcal{U}} \prod_{f:X\simeq A} C(X,f)\right)$$
$$J_e(C,c,A,\mathrm{id}_A) \equiv c$$

the Eq-J-judgement and the Eq-J-computation rule, respectively.

Theorem

The judgements and computational rules of the strong Yoneda-version of UA imply the Eq-J-judgement and the Eq-J-computation rule.

Proof

We fix $C: \prod_{X:\mathcal{U}} \prod_{f:X\simeq A} \mathcal{U}$ and $c\in C(A,\mathrm{id}_A)$. Let $E_A \equiv \sum_{X:\mathcal{U}} X\simeq A$, and $P: E_A\to \mathcal{U}$, defined by

$$P((X, f)) \equiv C(X, f),$$

for every $X:\mathcal{U}$ and $f:X\simeq A$. By Corollary

$$M_e(X,f):(X,f)=_{E_A}(A,\mathrm{id}_A),$$

hence

$$M_e(X, f)^{-1} : (A, id_A) =_{E_A} (X, f).$$

Consequently

$$\left[M_{\mathsf{e}}(X,f)^{-1}\right]_*^P:P((A,\mathrm{id}_A))\to P((X,f))\equiv C(A,\mathrm{id}_A)\to C(X,f).$$

We define

$$J_{e}(C, c, X, f) \equiv [M_{e}(X, f)^{-1}]_{*}^{P}(c).$$

By the corollary we get

$$J_{e}(C, c, A, id_{A}) \equiv \left[M_{e}(A, id_{A})^{-1}\right]_{*}^{P}(c)$$

$$\equiv \left[\left(\operatorname{refl}_{(A, id_{A})}\right)^{-1}\right]_{*}^{P}(c)$$

$$\equiv \left[\operatorname{refl}_{(A, id_{A})}\right]_{*}^{P}(c)$$

$$\equiv id_{P((A, id_{A}))}(c)$$

$$\equiv id_{C(A, id_{A})}(c)$$

$$\equiv c.$$

Corollary

If
$$f: X \simeq A$$
, then $IdtoEqv(X, ua'(X, f)) = f$.

Proof.

We define $C(X, f) \equiv IdtoEqv(X, ua'(X, f)) = f$. Since

$$egin{aligned} \mathcal{C}(A,\mathrm{id}_A) &\equiv \mathrm{IdtoEqv}(A,\mathrm{ua}'(A,\mathrm{id}_A)) = \mathrm{id}_A \ &\equiv \mathrm{IdtoEqv}(A,\mathrm{refl}_A) = \mathrm{id}_A \ &\equiv \mathrm{id}_A = \mathrm{id}_A, \end{aligned}$$

we have that $refl_{id_A}$: $C(A, id_A)$, and we use the Theorem.

Concluding remarks

- ► The proximity of UA to the *J*-rule is shown here also from the categorical point of view. Both admit a Yoneda-lemma formulation.
- The strong Yoneda lemma-formulation of univalence supports the definitional approach to the computational rules associated to the judgements of type theory. It is also used to construct Voevodsky's formulation of univalence.
- We need to check sY-UA in models of UTT.

- T. Coquand: A remark on singleton types, manuscript, 2014.
- M. Escardó: Using Yoneda rather than *J* to present the identity type, Agda file, in http://www.cs.bham.ac.uk/~mhe/yoneda/yoneda.html
- I. Petrakis: A Yoneda lemma-formulation of the univalence axiom, preprint, 2018.
- **E.** Rijke: *Homotopy Type Theory*, Master Thesis, Utrecht University 2012.
- The Univalent Foundations Program: *Homotopy Type Theory: Univalent Foundations of Mathematics*, Institute for Advanced Study, Princeton, 2013.