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Context
Like simplicial sets, cubical sets provide a combinatorial model of homotopy
theory.

However, there are several varieties of cubical sets to choose from.

Maps include faces, degeneracies, diagonals, connections, etc..

Relations witness properties of geometric cubes.

Various criteria for choosing a cubical theory, including:
▶ homotopy theory (strict test categories),
▶ computational behavior (canonical forms, 𝑥-Reedy structure, distributive

laws),
▶ model structure (judgemental vs typal equalities),
▶ etc.
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Overview

Motivated by order-theoretic and monoidal structure, we present a simple cube
category that:

▶ contains all the familiar maps,

▶ has a strong equational theory,
▶ is a strict test category,
▶ is closely related to simplices.
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Combinatorial Aspects
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Simplicies, Order-Theoretically

An 𝑛-simplex, “⟨𝑛⟩”, is the walking path of 𝑛 serially composable arrows.

The simplex category, “∆”, can be presented as the (skeleton of the) full
subcategory of Ord containing inhabited, finite, totally ordered sets:

⟨𝑛⟩ ≔ fin(𝑛 + 1) e.g. ⟨2⟩ ≔ {0, 1, 2}

Its maps are generated by:

faces (dimension-raising maps) injective monotone functions
e.g. 𝑑1 = [0, 2] = {0, 1} ⟼ {0, 2} ∶ ∆ (⟨1⟩ → ⟨2⟩)

degeneracies (dimension-lowering maps) surjective monotone functions
e.g. 𝑠1 = [0, 1, 1] = {0, 1, 2} ⟼ {0, 1, 1} ∶ ∆ (⟨2⟩ → ⟨1⟩)
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Simplicies, Monoidally
The simplex category can also be presented via the walking monoid, which is
the category 𝕄 with:

▶ one generating object, V ∶ 𝕄
▶ two generating morphisms, 𝑠 ∶ 𝕄 (V ⊗ V → V) and 𝑑 ∶ 𝕄 (I → V)
▶ relations that make (V, 𝑑, 𝑠) a monoid in (𝕄, ⊗, I).

Then ∆ is the full subcategory of 𝕄 excluding the object V⊗0 with
⟨𝑛⟩ ≔ V⊗(𝑛+1).

Example: composing 𝑑1 ∶ ∆ (⟨1⟩ → ⟨2⟩) with 𝑠1 ∶ ∆ (⟨2⟩ → ⟨1⟩):

0

0

1

21

1

𝑑
𝑠
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Ordered (Monoidal) Cubes?

The well-studied cube categories also have order-theoretic [Jar06] and
monoidal [GM03] presentations.

But in the monoidal presentation there is a “dimension mismatch”:
the generating object is an interval rather than a point.

Goal: a vertex-based cube category with all familiar maps and relations that is
related to the simplex category by their order-theoretic presentations.

7 / 24



Ordered (Monoidal) Cubes?

The well-studied cube categories also have order-theoretic [Jar06] and
monoidal [GM03] presentations.

But in the monoidal presentation there is a “dimension mismatch”:
the generating object is an interval rather than a point.

Goal: a vertex-based cube category with all familiar maps and relations that is
related to the simplex category by their order-theoretic presentations.

7 / 24



Ordered Cubes
The standard geometric 𝑛-cube is the convex subspace of ℝ𝑛 bounded by the
2𝑛 vertex points 𝑣 = (𝑣0 , ⋯ , 𝑣𝑛−1)⏟⏟⏟⏟⏟

“𝑣0⋯𝑣𝑛−1”

where 𝑣𝑖 ∈ {0, 1}.

Therefore we define:
Definition
An ordered 𝑛-cube, “[𝑛]”, is the preorderd set {0 ≤ 1}×𝑛

▶ [𝑛] is the walking product of 𝑛 arrows.
▶ Each [𝑛] is a complete and distributive lattice.
▶ [𝑛] is isomorphic to the subset lattice of fin(𝑛) where 𝑣𝑖 = 1 ⇔ 𝑖 ∈ 𝑣:

000 100

001 101
010 110

011 111

≅

∅ {0}

{2} {0, 2}
{1} {0, 1}

{1, 2} {0, 1, 2}
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Ordered Cube Category

Definition
The ordered cube category, “□”, is the full subcategory of Ord (thus of Cat)
containing the ordered cubes.

Among its maps are the:

aspects (dimension-raising maps) injective monotone functions
□ ([𝑛 − 1] → [𝑛])

derivatives (dimension-lowering maps) surjective monotone functions
□ ([𝑛 + 1] → [𝑛])
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Familiar Aspects
Aspects include:

Inserting coordinate 𝑏 ∈ {0, 1} at index 𝑖 of every vertex gives a map
[𝑖↦𝑏] ∶ □ ([𝑛 − 1] → [𝑛]) determining a face.

0 1

00 10

01 11

000 100

001 101

[0↦0]

[1↦0]
[1↦0]δ(0, 1) δ(0, 1)δ(0, 2)

010 110

011 111

Inserting a copy of the coordinate in index 𝑖 at index 𝑗 of every vertex (where
𝑖 < 𝑗) gives a map δ(𝑖, 𝑗) ∶ □ ([𝑛 − 1] → [𝑛]), determining a diagonal.

Although drawn as polytopes, these are just order-preserving maps of vertices.
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Familiar Derivatives
Derivatives include:

Deleting the coordinate at index 𝑖 of every vertex gives a map
̂𝑖 ∶ □ ([𝑛 + 1] → [𝑛]) determining a degeneracy.

∙ 0 1

00 10

01 11
̂0

̂1̂0[0↦0 ∨ 1][0↦0 ∧ 1]

For each vertex 𝑣 and ∗ ∈ {∨, ∧}, computing the coordinate 𝑏 ≔ 𝑣𝑖 ∗ 𝑣𝑗, then
deleting the coordinates at indices 𝑖 and 𝑗, then inserting 𝑏 at index 𝑘 gives a
map [𝑘↦𝑖 ∗ 𝑗] ∶ □ ([𝑛 + 1] → [𝑛]) determining a connection.

Thus □ has the usual cubical maps.
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Novel Maps

But there are additional maps as well,

For example, the “bent square” aspect of the cube:

β
[2] ⟶ [3]
00 ⟼ 000
01 ⟼ 011
10 ⟼ 101
11 ⟼ 111

000 100

001 101
010 110

011 111

Note: several workshop participants observed that this map is not, in fact,
novel, and I am grateful to Ulrik Buchholtz for pointing out to me that the
ordered cubes are equivalent to the distributive lattice cubes.

12 / 24



Triangulation
Since ∆ ⊆ Ord and □ ⊆ Ord, we can consider maps in the hom
Ord (⟨𝑚⟩ → [𝑛]).
It suffices to consider the nondegenerate (i.e. injective) maps in the hom
Ord (⟨𝑛⟩ → [𝑛]).

Each permutation of fin(𝑛) corresponds to an ordered embedding ⟨𝑛⟩ ↪ [𝑛]
by choosing an index (i.e. dimension) for each arrow in the path:

000 100

001 101
010 110

011 111

This determines a triangulation profunctor 𝑡 ∶ □ ⇸ ∆ (i.e. ∆° × □ → Set).
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010 110

011 111
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Homotopical Aspects
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Localization

For a category with weak equivalences (ℂ, 𝒲) and a category 𝔻,
any functor sending weak equivalences in ℂ to isos in 𝔻

factors through a
localization functor sending weak equivalences to isos in the homotopy
category of ℂ.

(ℂ, 𝒲) (𝔻, ℐ)F

The homotopy category can be constructed by freely adding inverses to the
weak equivalences.

15 / 24



Localization

For a category with weak equivalences (ℂ, 𝒲) and a category 𝔻,
any functor sending weak equivalences in ℂ to isos in 𝔻 factors through a
localization functor sending weak equivalences to isos in the homotopy
category of ℂ.

(ℂ, 𝒲) (𝔻, ℐ)F

(Ho ℂ, ℐ)

γ ℂ (Ho F, ℐ)

The homotopy category can be constructed by freely adding inverses to the
weak equivalences.

15 / 24



Localization

For a category with weak equivalences (ℂ, 𝒲) and a category 𝔻,
any functor sending weak equivalences in ℂ to isos in 𝔻 factors through a
localization functor sending weak equivalences to isos in the homotopy
category of ℂ.

(ℂ, 𝒲) (𝔻, ℐ)F

(Ho ℂ, ℐ)

γ ℂ (Ho F, ℐ)

The homotopy category can be constructed by freely adding inverses to the
weak equivalences.

15 / 24



Test Categories
For small 𝕊 and cocomplete ℂ, a functor F ∶ 𝕊 → ℂ determines an adjunction
where Lan𝑦F(X) = ∫𝑠∶𝕊(X𝑠 ⊗ F𝑠)

𝑦

⊥

𝕊

𝕊̂ ℂ

F
Lan𝑦F

ℂ (F 2− → 1−)

∆

∆̂ Top

∆Top

|−|

sing

𝕊

𝕊̂ Cat

𝕊/−
∫𝕊

𝒩𝕊

𝕊

𝕊̂ Cat

𝕊/−
∫𝕊

𝒩𝕊

Ho 𝕊̂ Ho Cat

γ 𝕊̂ γ Cat
L ∫𝕊

R𝒩𝕊

⊥

If this adjunction is an equivalence then 𝕊 is a weak test category.
If this also holds true for all slices then 𝕊 is a test category.
And if ∫𝕊 ⋅γ Cat preserves products then 𝕊 is a strict test category.

We can do synthetic homotopy theory in the category of presheaves for any
(strict) test category [Gro83].
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□ is a Strict Test Category

It suffices [Mal05; BM17] to observe that □ has finite products:

1 = [0] and [𝑚] × [𝑛] = [𝑚 + 𝑛]

and an interval object:

[0↦0], [0↦1] ∶ □ ([0] → [1])

whose Yoneda image is separated (has the unique □̂ (0 → 1) as equalizer).
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Test Functors
In the basic setup, we ask whether the slice functor induces an equivalence of
homotopy categories.

We can ask the same for an arbitrary functor F ∶ 𝕊 → Cat.

𝑦

⊥

𝕊

𝕊̂ Cat

𝕊/−
∫𝕊

𝒩𝕊

𝕊

𝕊̂ Cat

F
Lan𝑦F

F 2− → 1−

For 𝕊 a weak test category , F is a weak test functor if:
▶ F(S) is aspheric (weakly equivalent to a point) for all S ∶ 𝕊,
▶ the 𝕊-nerve (right adjoint) preserves weak equivalences.

Any weak test functor induces an adjoint equivalence of homotopy categories.

If all slices ∂− ⋅ F ∶ 𝕊/S → 𝕊 → Cat are weak test functors then F is a test
functor.
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□ ↪ Cat is a Test Functor

It suffices [ZK12] to observe that □ is a full subcategory of Cat that:
▶ is closed under finite products,
▶ includes the walking interval,
▶ and excludes the walking nothing.
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Model Structure

The category of presheaves for any test category can be equipped with a
canonical model structure where [Cis06]:

cofibrations are the monomorphisms,

weak equivalences are the maps that become weak equivalence in Cat under
the category of elements functor.

Fibrant objects in this model structure on □̂ have lots of fillings;
e.g. from the “bent square” to the cube.

Implications??
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Simplicial Cubes
There is a canonical functor □ → ∆̂ mapping [𝑛] ⟼ (∆1)×𝑛.

Since ∆̂ has pointwise products (i.e. (X × Y)𝑓 ≅ X𝑓 × Y𝑓), a simplex is
degenerate in X × Y iff it is degenerate in X and Y simultaneously.

Consider the nondegenerate 𝑛-simplices in (∆1)×𝑛.

Example: 𝑛 ≔ 2

([0, 1, 1] , [0, 0, 1]) and ([0, 0, 1] , [0, 1, 1])

Zipping these:

[(0 , 0), (1 , 0), (1 , 1)] and [(0 , 0), (0 , 1), (1 , 1)]

00 10

01 11

We recover the triangulation profunctor 𝑡 ∶ □ ⇸ ∆.
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Triangulating Cubical Sets

Since □ is small and ∆̂ is cocomplete we can extend triangulation along
Yoneda:

□

□̂ ∆̂

𝑡𝑦
𝑡!

𝑡∗
⊥

which lets us triangulate cubical sets.

This has right adjoint 𝑡∗ ≔ ∆̂ (𝑡 2− → 1−) characterizing the maps from cubes into
synthetic spaces presented as simplicial sets.
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Summary

The ordered cubes are a shape category with good combinatorial and
homotopical properties.

They may also provide an interesting foundation for a cubical type theory.

I am grateful to several workshop participants for pointing out to me related
work of which I was unaware. In particular, I would like to acknowledge a
recent preprint by Chris Kapulkin containing joint work done with Vladimir
Voevodsky, which contains many of the results discussed here – and much
more besides:
http://www.math.uwo.ca/faculty/kapulkin/papers/
cubical-approach-to-straightening.pdf
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