Ordered Cubes

Ed Morehouse

HoTT/UF, Oxford
July 8, 2018

Context

Like simplicial sets, cubical sets provide a combinatorial model of homotopy theory.

However, there are several varieties of cubical sets to choose from.

Maps include faces, degeneracies, diagonals, connections, etc..

Relations witness properties of geometric cubes.

Context

Like simplicial sets, cubical sets provide a combinatorial model of homotopy theory.

However, there are several varieties of cubical sets to choose from.

Maps include faces, degeneracies, diagonals, connections, etc..

Relations witness properties of geometric cubes.

Various criteria for choosing a cubical theory, including:

- homotopy theory (strict test categories),
- computational behavior (canonical forms, x-Reedy structure, distributive laws),
- model structure (judgemental vs typal equalities),
- etc.

Overview

Motivated by order-theoretic and monoidal structure, we present a simple cube category that:

- contains all the familiar maps,

Overview

Motivated by order-theoretic and monoidal structure, we present a simple cube category that:

- contains all the familiar maps,
- has a strong equational theory,

Overview

Motivated by order-theoretic and monoidal structure, we present a simple cube category that:

- contains all the familiar maps,
- has a strong equational theory,
- is a strict test category,

Overview

Motivated by order-theoretic and monoidal structure, we present a simple cube category that:

- contains all the familiar maps,
- has a strong equational theory,
- is a strict test category,
- is closely related to simplices.

Combinatorial Aspects

Simplicies, Order-Theoretically

An n-simplex, " $\langle n\rangle$ ", is the walking path of n serially composable arrows.

Simplicies, Order-Theoretically

An n-simplex, " $\langle n\rangle$ ", is the walking path of n serially composable arrows.

The simplex category, " Δ ", can be presented as the (skeleton of the) full subcategory of ORD containing inhabited, finite, totally ordered sets:

$$
\langle n\rangle:=\operatorname{fin}(n+1) \quad \text { e.g. } \quad\langle 2\rangle:=\{0,1,2\}
$$

Simplicies, Order-Theoretically

An n-simplex, " $\langle n\rangle$ ", is the walking path of n serially composable arrows.

The simplex category, " Δ ", can be presented as the (skeleton of the) full subcategory of ORD containing inhabited, finite, totally ordered sets:

$$
\langle n\rangle:=\operatorname{fin}(n+1) \quad \text { e.g. } \quad\langle 2\rangle:=\{0,1,2\}
$$

Its maps are generated by:
faces (dimension-raising maps) injective monotone functions

$$
\text { e.g. } \quad d^{1}=[0,2]=\{0,1\} \longmapsto\{0,2\}: \Delta(\langle 1\rangle \rightarrow\langle 2\rangle)
$$

degeneracies (dimension-lowering maps) surjective monotone functions

$$
\text { e.g. } \quad s^{1}=[0,1,1]=\{0,1,2\} \longmapsto\{0,1,1\}: \Delta(\langle 2\rangle \rightarrow\langle 1\rangle)
$$

Simplicies, Monoidally

The simplex category can also be presented via the walking monoid, which is the category M with:

- one generating object, $\mathrm{V}: \mathrm{M}$
two generating morphisms, $s: M(\mathrm{~V} \otimes \mathrm{~V} \rightarrow \mathrm{~V})$ and $d: M(\mathrm{I} \rightarrow \mathrm{V})$
- relations that make (V, d, s) a monoid in $(\mathrm{M}, \otimes, \mathrm{I})$.

Then Δ is the full subcategory of M excluding the object $V^{\otimes 0}$ with $\langle n\rangle:=\mathrm{V}^{\otimes(n+1)}$.

Simplicies, Monoidally

The simplex category can also be presented via the walking monoid, which is the category M with:

- one generating object, $\mathrm{V}: \mathrm{M}$
two generating morphisms, $s: M(\mathrm{~V} \otimes \mathrm{~V} \rightarrow \mathrm{~V})$ and $d: M(\mathrm{I} \rightarrow \mathrm{V})$
- relations that make (V, d, s) a monoid in $(\mathrm{M}, \otimes, \mathrm{I})$.

Then Δ is the full subcategory of M excluding the object $V^{\otimes 0}$ with $\langle n\rangle:=\mathrm{V}^{\otimes(n+1)}$.

Example: composing $d^{1}: \Delta(\langle 1\rangle \rightarrow\langle 2\rangle)$ with $s^{1}: \Delta(\langle 2\rangle \rightarrow\langle 1\rangle)$:

Ordered (Monoidal) Cubes?

The well-studied cube categories also have order-theoretic [Jar06] and monoidal [GMO3] presentations.

But in the monoidal presentation there is a "dimension mismatch": the generating object is an interval rather than a point.

Ordered (Monoidal) Cubes?

The well-studied cube categories also have order-theoretic [Jar06] and monoidal [GMO3] presentations.

But in the monoidal presentation there is a "dimension mismatch": the generating object is an interval rather than a point.

Goal: a vertex-based cube category with all familiar maps and relations that is related to the simplex category by their order-theoretic presentations.

Ordered Cubes

The standard geometric n-cube is the convex subspace of \mathbb{R}^{n} bounded by the 2^{n} vertex points $v=\underbrace{\left(v_{0}, \cdots, v_{n-1}\right)}_{{ }^{v} v_{0} \cdots v_{n-1} "}$ where $v_{i} \in\{0,1\}$.

Ordered Cubes

The standard geometric n-cube is the convex subspace of \mathbb{R}^{n} bounded by the 2^{n} vertex points $v=\underbrace{\left(v_{0}, \cdots, v_{n-1}\right)}_{{ }^{v} v_{0} \cdots v_{n-1} "}$ where $v_{i} \in\{0,1\}$.
Therefore we define:
Definition
An ordered n-cube, "[$n]^{\text {", }}$, is the preorderd set $\{0 \leq 1\}^{\times n}$

Ordered Cubes

The standard geometric n-cube is the convex subspace of \mathbb{R}^{n} bounded by the 2^{n} vertex points $v=\underbrace{\left(v_{0}, \cdots, v_{n-1}\right)}_{{ }^{v} v_{0} \cdots v_{n-1} "}$ where $v_{i} \in\{0,1\}$.
Therefore we define:

Definition

An ordered n-cube, " $n n$ ", is the preorderd set $\{0 \leq 1\}^{\times n}$

- $[n]$ is the walking product of n arrows.

Ordered Cubes

The standard geometric n-cube is the convex subspace of \mathbb{R}^{n} bounded by the 2^{n} vertex points $v=\underbrace{\left(v_{0}, \cdots, v_{n-1}\right)}_{{ }^{v} v_{0} \cdots v_{n-1} "}$ where $v_{i} \in\{0,1\}$.
Therefore we define:
Definition
An ordered n-cube, " $n n$ ", is the preorderd set $\{0 \leq 1\}^{\times n}$

- $[n]$ is the walking product of n arrows.
- Each $[n]$ is a complete and distributive lattice.

Ordered Cubes

The standard geometric n-cube is the convex subspace of \mathbb{R}^{n} bounded by the 2^{n} vertex points $v=\underbrace{\left(v_{0}, \cdots, v_{n-1}\right)}_{{ }^{*} v_{0} \cdots v_{n-1} "}$ where $v_{i} \in\{0,1\}$.

Therefore we define:
Definition
An ordered n-cube, "[n]", is the preorderd set $\{0 \leq 1\}^{\times n}$

- $[n]$ is the walking product of n arrows.
- Each $[n]$ is a complete and distributive lattice.
- $[n]$ is isomorphic to the subset lattice of $\operatorname{fin}(n)$ where $v_{i}=1 \Leftrightarrow i \in v$:

Ordered Cube Category

Definition

The ordered cube category, " \square ", is the full subcategory of OrD (thus of CAT) containing the ordered cubes.

Ordered Cube Category

Definition

The ordered cube category, " \square ", is the full subcategory of OrD (thus of CAT) containing the ordered cubes.

Among its maps are the:
aspects (dimension-raising maps) injective monotone functions
$\square([n-1] \rightarrow[n])$
derivatives (dimension-lowering maps) surjective monotone functions
$\square([n+1] \rightarrow[n])$

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Inserting a copy of the coordinate in index i at index j of every vertex (where $i<j$) gives a map $\delta(i, j): \square([n-1] \rightarrow[n])$, determining a diagonal.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Inserting a copy of the coordinate in index i at index j of every vertex (where $i<j)$ gives a map $\delta(i, j): \square([n-1] \rightarrow[n])$, determining a diagonal.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Inserting a copy of the coordinate in index i at index j of every vertex (where $i<j)$ gives a map $\delta(i, j): \square([n-1] \rightarrow[n])$, determining a diagonal.

Familiar Aspects

Aspects include:
Inserting coordinate $b \in\{0,1\}$ at index i of every vertex gives a map $[i \mapsto b]: \square([n-1] \rightarrow[n])$ determining a face.

Inserting a copy of the coordinate in index i at index j of every vertex (where $i<j$) gives a map $\delta(i, j): \square([n-1] \rightarrow[n])$, determining a diagonal.

Although drawn as polytopes, these are just order-preserving maps of vertices.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

For each vertex v and $* \in\{\mathrm{~V}, \wedge\}$, computing the coordinate $b:=v_{i} * v_{j}$, then deleting the coordinates at indices i and j, then inserting b at index k gives a map $[k \mapsto i * j]: \square([n+1] \rightarrow[n])$ determining a connection.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

For each vertex v and $* \in\{\mathrm{~V}, \wedge\}$, computing the coordinate $b:=v_{i} * v_{j}$, then deleting the coordinates at indices i and j, then inserting b at index k gives a map $[k \mapsto i * j]: \square([n+1] \rightarrow[n])$ determining a connection.

Familiar Derivatives

Derivatives include:
Deleting the coordinate at index i of every vertex gives a map $\hat{i}: \square([n+1] \rightarrow[n])$ determining a degeneracy.

For each vertex v and $* \in\{\mathrm{~V}, \wedge\}$, computing the coordinate $b:=v_{i} * v_{j}$, then deleting the coordinates at indices i and j, then inserting b at index k gives a map $[k \mapsto i * j]: \square([n+1] \rightarrow[n])$ determining a connection.

Thus \square has the usual cubical maps.

Novel Maps

But there are additional maps as well,
For example, the "bent square" aspect of the cube:

Note: several workshop participants observed that this map is not, in fact, novel, and I am grateful to Ulrik Buchholtz for pointing out to me that the ordered cubes are equivalent to the distributive lattice cubes.

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom $\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.

It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[0,1,2]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[0,2,1]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
Ord $(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[2,0,1]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[1,0,2]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.
Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[1,2,0]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
Ord $(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[2,1,0]$

Triangulation

Since $\Delta \subseteq$ ORD and $\square \subseteq$ ORD, we can consider maps in the hom
$\operatorname{OrD}(\langle m\rangle \rightarrow[n])$.
It suffices to consider the nondegenerate (i.e. injective) maps in the hom ORD $(\langle n\rangle \rightarrow[n])$.

Each permutation of $\operatorname{fin}(n)$ corresponds to an ordered embedding $\langle n\rangle \hookrightarrow[n]$ by choosing an index (i.e. dimension) for each arrow in the path:
$[2,1,0]$

This determines a triangulation profunctor $t: \square \rightarrow \Delta$ (i.e. $\Delta^{\circ} \times \square \rightarrow$ SET).

Homotopical Aspects

Localization

For a category with weak equivalences $(\mathbb{C}, \mathcal{W})$ and a category \mathbb{D}, any functor sending weak equivalences in \mathbb{C} to isos in \mathbb{D}

$$
(\mathbb{C}, \mathcal{W}) \longrightarrow \underset{\mathrm{F}}{\longrightarrow}(\mathbb{D}, \mathcal{J})
$$

Localization

For a category with weak equivalences $(\mathbb{C}, \mathcal{W})$ and a category \mathbb{D}, any functor sending weak equivalences in \mathbb{C} to isos in \mathbb{D} factors through a localization functor sending weak equivalences to isos in the homotopy category of \mathbb{C}.

Localization

For a category with weak equivalences $(\mathbb{C}, \mathcal{W})$ and a category \mathbb{D}, any functor sending weak equivalences in \mathbb{C} to isos in \mathbb{D} factors through a localization functor sending weak equivalences to isos in the homotopy category of \mathbb{C}.

The homotopy category can be constructed by freely adding inverses to the weak equivalences.

Test Categories

For small \mathbb{S} and cocomplete \mathbb{C}, a functor $\mathrm{F}: \mathbb{S} \rightarrow \mathbb{C}$ determines an adjunction where $\operatorname{Lan}_{y} \mathrm{~F}(\mathrm{X})=\int^{s: S}(\mathrm{X} s \otimes \mathrm{~F} s)$

Test Categories

The standard topological simplex functor determines geometric realization and singular complex.

Test Categories

The slice functor determines the category of elements and nerve (where $\int_{S} \mathrm{X}=y(-) / \mathrm{X}$).

Test Categories

Localization induces an adjunction on the homotopy categories.

Test Categories

Localization induces an adjunction on the homotopy categories.

If this adjunction is an equivalence then \mathbb{S} is a weak test category. If this also holds true for all slices then \mathbb{S} is a test category. And if $\int_{\mathbb{S}} \cdot \gamma$ CAT preserves products then \mathbb{S} is a strict test category.

Test Categories

Localization induces an adjunction on the homotopy categories.

If this adjunction is an equivalence then \mathbb{S} is a weak test category.
If this also holds true for all slices then \mathbb{S} is a test category.
And if $\int_{S} \cdot \gamma$ CAT preserves products then \mathbb{S} is a strict test category.
We can do synthetic homotopy theory in the category of presheaves for any (strict) test category [Gro83].

\square is a Strict Test Category

It suffices [Mal05; BM17] to observe that \square has finite products:

$$
1=[0] \quad \text { and } \quad[m] \times[n]=[m+n]
$$

and an interval object:

$$
[0 \mapsto 0],[0 \mapsto 1]: \square([0] \rightarrow[1])
$$

whose Yoneda image is separated (has the unique $\hat{\square}(0 \rightarrow 1)$ as equalizer).

Test Functors

In the basic setup, we ask whether the slice functor induces an equivalence of homotopy categories.

Test Functors

In the basic setup, we ask whether the slice functor induces an equivalence of homotopy categories.

We can ask the same for an arbitrary functor $\mathrm{F}: \mathbb{S} \rightarrow$ CAT.

Test Functors

In the basic setup, we ask whether the slice functor induces an equivalence of homotopy categories.

We can ask the same for an arbitrary functor $\mathrm{F}: \mathbb{S} \rightarrow$ CAT.

For \mathbb{S} a weak test category, F is a weak test functor if:
$\rightarrow \mathrm{F}(\mathrm{S})$ is aspheric (weakly equivalent to a point) for all $\mathrm{S}: \mathrm{S}$,

- the \mathbb{S}-nerve (right adjoint) preserves weak equivalences.

Any weak test functor induces an adjoint equivalence of homotopy categories.

Test Functors

In the basic setup, we ask whether the slice functor induces an equivalence of homotopy categories.
We can ask the same for an arbitrary functor $\mathrm{F}: \mathbb{S} \rightarrow$ CAT.

For \mathbb{S} a weak test category, F is a weak test functor if:
$\rightarrow \mathrm{F}(\mathrm{S})$ is aspheric (weakly equivalent to a point) for all $\mathrm{S}: \mathrm{S}$,

- the \mathbb{S}-nerve (right adjoint) preserves weak equivalences.

Any weak test functor induces an adjoint equivalence of homotopy categories.
If all slices $\partial^{-} \cdot F: \mathbb{S} / S \rightarrow \mathbb{S} \rightarrow$ CAT are weak test functors then F is a test functor.

$\square \hookrightarrow$ CAT is a Test Functor

It suffices [ZK12] to observe that \square is a full subcategory of CAT that:

- is closed under finite products,
- includes the walking interval,
- and excludes the walking nothing.

Model Structure

The category of presheaves for any test category can be equipped with a canonical model structure where [Cis06]:
cofibrations are the monomorphisms,
weak equivalences are the maps that become weak equivalence in Cat under the category of elements functor.

Model Structure

The category of presheaves for any test category can be equipped with a canonical model structure where [Cis06]:
cofibrations are the monomorphisms,
weak equivalences are the maps that become weak equivalence in Cat under the category of elements functor.

Fibrant objects in this model structure on $\hat{\square}$ have lots of fillings; e.g. from the "bent square" to the cube.

Implications??

Simplicial Cubes

There is a canonical functor $\square \rightarrow \hat{\Delta}$ mapping $[n] \longmapsto\left(\Delta^{1}\right)^{\times n}$.
Since $\widehat{\Delta}$ has pointwise products (i.e. $(\mathrm{X} \times \mathrm{Y}) f \cong \mathrm{X} f \times \mathrm{Y} f$), a simplex is degenerate in $\mathrm{X} \times \mathrm{Y}$ iff it is degenerate in X and Y simultaneously.

Simplicial Cubes

There is a canonical functor $\square \rightarrow \hat{\Delta}$ mapping $[n] \longmapsto\left(\Delta^{1}\right)^{\times n}$.
Since $\widehat{\Delta}$ has pointwise products (i.e. $(\mathrm{X} \times \mathrm{Y}) f \cong \mathrm{X} f \times \mathrm{Y} f$), a simplex is degenerate in $\mathrm{X} \times \mathrm{Y}$ iff it is degenerate in X and Y simultaneously.

Consider the nondegenerate n-simplices in $\left(\Delta^{1}\right)^{\times n}$.
Example: $n:=2$

$$
([0,1,1],[0,0,1]) \quad \text { and } \quad([0,0,1],[0,1,1])
$$

Simplicial Cubes

There is a canonical functor $\square \rightarrow \hat{\Delta}$ mapping $[n] \longmapsto\left(\Delta^{1}\right)^{\times n}$.
Since $\widehat{\Delta}$ has pointwise products (i.e. $(\mathrm{X} \times \mathrm{Y}) f \cong \mathrm{X} f \times \mathrm{Y} f$), a simplex is degenerate in $\mathrm{X} \times \mathrm{Y}$ iff it is degenerate in X and Y simultaneously.
Consider the nondegenerate n-simplices in $\left(\Delta^{1}\right)^{\times n}$.
Example: $n:=2$

$$
([0,1,1],[0,0,1]) \quad \text { and } \quad([0,0,1],[0,1,1])
$$

Zipping these:

$$
[(0,0),(1,0),(1,1)] \quad \text { and } \quad[(0,0),(0,1),(1,1)]
$$

Simplicial Cubes

There is a canonical functor $\square \rightarrow \hat{\Delta}$ mapping $[n] \longmapsto\left(\Delta^{1}\right)^{\times n}$.
Since $\widehat{\Delta}$ has pointwise products (i.e. $(\mathrm{X} \times \mathrm{Y}) f \cong \mathrm{X} f \times \mathrm{Y} f$), a simplex is degenerate in $\mathrm{X} \times \mathrm{Y}$ iff it is degenerate in X and Y simultaneously.

Consider the nondegenerate n-simplices in $\left(\Delta^{1}\right)^{\times n}$.
Example: $n:=2$

$$
([0,1,1],[0,0,1]) \quad \text { and } \quad([0,0,1],[0,1,1])
$$

Zipping these:

$$
[(0,0),(1,0),(1,1)] \quad \text { and } \quad[(0,0),(0,1),(1,1)]
$$

We recover the triangulation profunctor $t: \square \rightarrow \Delta$.

Triangulating Cubical Sets

Since \square is small and $\hat{\Delta}$ is cocomplete we can extend triangulation along Yoneda:

which lets us triangulate cubical sets.

Triangulating Cubical Sets

Since \square is small and $\hat{\Delta}$ is cocomplete we can extend triangulation along Yoneda:

which lets us triangulate cubical sets.
This has right adjoint $t^{*}:=\widehat{\Delta}\left(t^{\underline{2}} \rightarrow \underline{\underline{1}}\right)$ characterizing the maps from cubes into synthetic spaces presented as simplicial sets.

Summary

The ordered cubes are a shape category with good combinatorial and homotopical properties.

They may also provide an interesting foundation for a cubical type theory.

> I am grateful to several workshop participants for pointing out to me related work of which I was unaware. In particular, I would like to acknowledge a recent preprint by Chris Kapulkin containing joint work done with Vladimir Voevodsky, which contains many of the results discussed here - and much more besides:
> http://www.math.uwo.ca/faculty/kapulkin/papers/ cubical-approach-to-straightening.pdf

References

Ulrik Buchholtz and Edward Morehouse. "Varieties of Cubical Sets".
In: Relational and Algebraic Methods in Computer Science.
Vol. 10226. Lecture Notes in Computer Science. Springer, 2017. urL:
https://arxiv.org/abs/1701.08189.
Denis-Charles Cisinski. "Les Préfaisceaux comme Modéles des Types d'Homotopie". PhD thesis. Université Paris VII, 2006. Marco Grandis and Luca Mauri. "Cubical Sets and their Site". In: Theory and Application of Categories 11.8 (2003), pp. 185-211.
Alexander Grothendieck. "Pursuing Stacks". 1983. url: https://thescrivener.github.io/PursuingStacks/.
John Frederick Jardine. "Categorical Homotopy Theory". In: Homology, Homotopy and Applications 8 (2006), pp. 71-144.
Georges Maltsiniotis. "Le Théorie de l'Homotopie de Grothendieck".
In: (2005).
Marek Zawadowski and Chris Kapulkin. "Introduction to Test
Categories". lecture notes. 2012.

