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Abstract

Cohen, Coquand, Huber and Mortberg [CCHMIS]| introduced a type theory whose equal-
ity type is defined as a (dependent) product over a formal notion of interval. This approach
directly endows the tower of nested equalities over a type with a symmetric cubical structure
whose equations over the operations of the structure hold definitionally.

We study a few properties of this structure from a typed perspective.

We consider a type theory with a universe U and a heterogeneous equality defined by de-
pendent product over an interval (JCCHMIS|, Section 9]). We start with an interval with no
particular structure, besides supporting variables i, j, k, ... and formal endpoints 0 and 1 (i.e.
interval expressions are defined by 7 ::=4 | 0| 1) . Typing contexts include declaration of interval
variables. The rules for equality, essentially taken from [CCHMIS]|, are the following ones:

HE:A=sB  TrHt:A Tru:B Thpit=¢u Thp:it=cu
F't=¢u:U I'-po=t I'kpi=u
Iikt: A F'Fv:t=cu FV(r)eT
I'F itz t[o/i] =x.a t[1/7] FFovr:ér

where we write  to abbreviate \i.t for i not occurring in ¢ (if ¢ is of type A, t is a proof of t = G

where E, this time with A of type U, is itself a proof of A =5 A).

The type A =g B can be seen as the type of lines connecting the types A and B. Let us call
its inhabitants line types. For £ a line type between A and B and for t of type A and u of type
B, the type t =¢ u can be seen as the type of lines between ¢ of type A and u of type B. An
inhabitant of such a type is called a line and we say that it has line type &.

Let us then consider types A, B, C, and D, as well as lines £, (, ¢ and 9 relating these types
as in the square drawn on the left below:

A—2 ¢ Ty
§¢ => ig pi = iq
B D —w
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U
This square can be identified with the type § ; f where ¢ =¢ ¢ abbreviates Aj.(¢pj =¢; ¥ j).

D

Its inhabitants we call square types.
Let us next consider ¢, u, v, and w of type A, B, C, and D respectively, and p, ¢, r and s
lines between these points as drawn in the square above on the right, and E a square type, i.e.

a proof of type ¢ ;A wg for some &, ¢, ¢ and @ connecting A, B, C' and D as in the figure.
U

One can consider the type P T:~

sq , where =g s again abbreviates A\j.(rj =g; sj). This can

be seen as the type of squares with edges p, ¢, r and s and square type E.



We use the abbreviation ¢ Eg’ U = Niqedp.(ti..ip =¢iy..in Wi1...7ip) and define 3-dimensional
E =
cube types as inhabitant of types of the form G

. An inhabitant of “ v = is called
1=27 n=20

a 3-dimensional cube, for o, 3, 7, d, 1, € squares with aUppropriate conditions on their boundaries,

and £ a cube type.

Calling points 0-cubes, lines 1-cubes and squares 2-cubes, we can more generally define n-cube
types and n-cubes: given 2(n + 1) n-cubes «; and §; for 0 < i < n and appropriate conditions
on their boundaries, the previous nesting process allows to define a type of (n+ 1)-cubes over o
and f3; and of n-cube type £ that we shall abbreviate [y, ..., @] =¢ [Bo, ---s Bnl-

Let us now consider a general form of operations on (typed) m-cubes. An operation of
dimension n to p is given by a triple (®, Wy, ¥) satisfying the following properties: (i) for any
well-typed n-cube R of cube type £ (i.e. X of some type [a1,...,an] =¢ [B1, ..., Bn]), Yo(R) and
W1 (R) are sequences of p faces such that Wo(R) =g ) U1(R) is a well-typed type (i) ®(R) is of
this type (iil) ®(t = u) = ®(t) ;g(g) ®(u) (together with similar rules for every other connective
of the language). Examples of operations include:

e faces: 0T (p) £ po and 9~ (p) £ p1, both of dimension 1 to 0 and both with ¥y(p) and ¥4 (p)

returning the empty list of faces;

Ty

e degeneracies/reflexivity: e(t) £ %, of dimension 0 to 1 with both W (t) and Wy (¢) returning the
singleton list of faces [t];

e transpositions/interchange: o(a) £ \ij.aji, of dimension 2 to 2, with ¥o(a) = [Ai.c0i, Ai.vi0]
and Uy () £ [Ni.a1i, Mi.aiil;

e left (resp. right) connections: I't(p) (resp. I'"(p)) which can be taken as axioms, of dimension
1 to 2, with both Wy(p) and ¥y (p) being [p,pi] (resp. [po,p|);

! which can be taken as an axiom, of dimension 1 to 1 with ¥o(p) £ p1

e reversals/inverses: p~
and V1 (p) £ po;
e diagonals: A(a) = Mi.aii, of dimension 2 to 1 with ¥o(p) = a0 and ¥y(p) £ a11.
Operations from dimension 1 to some dimension p can be internalized as algebraic operations
of arity p on the interval. For instance, reversal and connections can be obtained, as in [CCHM18§],

by extending the interval with 7 ::= ... | —7 | 7A7 | 7V 7 and defining p~' £ Xi.p(—4), as well
as T'T(p) 2 Xij.p(i A j) and I'~(p) £ Xij.p(i V j). Using iterated congruence, as defined by:
') & o) 3" &2 A" () i taken fresh

any operation ® from dimension n can be extended into an operation ®,, acting on cubes of
dimension at least m-+n. For instance, for X of dimension ¢ > 1 and 0 < m < ¢, 9, (R) = 9+ m(N)
is the m-th left face operation of the cubical structure.

Note in passing that any n-cube of type [aq, ..., an] =¢ [51, ..., Bn] can alternatively be seen
as a p-cube of type [a1, ..., ap| =0 ., an] =2 By, (b1, ..., Bp] for 0 < p < n. Hence, any
operation acting on a p-cube directly acts also on an (p + ¢)-cube.

Operations can also be extended to take several arguments, with composition or tensor prod-
uct as examples.
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