The definitional symmetric cubical structure of types in type theory with equality defined by abstraction over an interval

Hugo Herbelin
INRIA - IRIF - University Paris Diderot

Abstract

Cohen, Coquand, Huber and Mörtberg [CCHM18] introduced a type theory whose equality type is defined as a (dependent) product over a formal notion of interval. This approach directly endows the tower of nested equalities over a type with a symmetric cubical structure whose equations over the operations of the structure hold definitionally.

We study a few properties of this structure from a typed perspective.

We consider a type theory with a universe \(U \) and a heterogeneous equality defined by dependent product over an interval (\cite{CCHM18}, Section 9). We start with an interval with no particular structure, besides supporting variables \(i, j, k, \ldots \) and formal endpoints 0 and 1 (i.e. interval expressions are defined by \(\tau ::= i \mid 0 \mid 1 \)). Typing contexts include declaration of interval variables. The rules for equality, essentially taken from \cite{CCHM18}, are the following ones:

\[
\begin{align*}
\Gamma \vdash \xi : A =_\emptyset B & \quad \Gamma \vdash t : A & \quad \Gamma \vdash u : B & \quad \Gamma \vdash t =_\xi u & \quad \Gamma \vdash p : t =_\xi u \\
\Gamma \vdash t =_\xi u : U & \quad \Gamma \vdash p 0 \equiv t & \quad \Gamma \vdash p 1 \equiv u \\
\Gamma, i \vdash t : A & \quad \Gamma \vdash v : t =_\xi u & \quad FV(\tau) \in \Gamma \\
\Gamma \vdash \lambda i. t : t[0/i] =_{\lambda i. A} t[1/i] & \quad \Gamma \vdash v \tau : \xi \tau
\end{align*}
\]

where we write \(\hat{t} \) to abbreviate \(\lambda i. t \) for \(i \) not occurring in \(t \) (if \(t \) is of type \(A \), \(\hat{t} \) is a proof of \(t =_A t \) where \(\hat{A} \), this time with \(A \) of type \(U \), is itself a proof of \(A =_\emptyset A \)).

The type \(A =_\emptyset B \) can be seen as the type of lines connecting the types \(A \) and \(B \). Let us call its inhabitants line types. For \(\xi \) a line type between \(A \) and \(B \) and for \(t \) of type \(A \) and \(u \) of type \(B \), the type \(t =_\xi u \) can be seen as the type of lines between \(t \) of type \(A \) and \(u \) of type \(B \). An inhabitant of such a type is called a line and we say that it has line type \(\xi \).

Let us then consider types \(A, B, C, \) and \(D \), as well as lines \(\xi, \zeta, \phi \) and \(\psi \) relating these types as in the square drawn on the left below:

\[
\begin{array}{ccc}
A & \phi & C \\
\xi \downarrow & \equiv & \zeta \\
B & \psi & D \\
\end{array}
\]

This square can be identified with the type \(\xi =_{\phi \equiv \psi} \zeta \) where \(\phi \equiv_{\psi} \zeta \) abbreviates \(\lambda j. (\phi j =_{\xi j} \psi j) \).

Its inhabitants we call square types.

Let us next consider \(t, u, v, \) and \(w \) of type \(A, B, C, \) and \(D \) respectively, and \(p, q, r \) and \(s \) lines between these points as drawn in the square above on the right, and \(E \) a square type, i.e. a proof of type \(\xi =_{\phi \equiv \psi} \zeta \) for some \(\xi, \zeta, \phi \) and \(\psi \) connecting \(A, B, C \) and \(D \) as in the figure.

One can consider the type \(P =_{r \equiv_E s} q \), where \(r \equiv_E s \) again abbreviates \(\lambda j. (r j =_{E j} s j) \). This can be seen as the type of squares with edges \(p, q, r \) and \(s \) and square type \(E \).
We use the abbreviation \(t \equiv^n_\xi u \triangleq \lambda i_1 \ldots i_n. (ti_1 \ldots i_n = \xi i_1 \ldots i_n u i_1 \ldots i_n) \) and define 3-dimensional cube types as inhabitant of types of the form \(E = F^G \) on their boundaries, the previous nesting process allows to define a type of \(\Psi \) of the language. Examples of operations include:

- \(\epsilon(t) \triangleq \tilde{t} \), of dimension 0 to 1 with both \(\Psi_0(t) \) and \(\Psi_1(t) \) returning the empty list of faces;
- degeneracies/reflexivity: \(\alpha = \beta \), of dimension 2 to 2, with \(\Psi_0(\alpha) \triangleq [\lambda i. \alpha i, \lambda \alpha ii] \) and \(\Psi_1(\alpha) \triangleq [\lambda i. \alpha ii, \lambda i i ii] \);
- transpositions/interchange: \(\sigma(\alpha) \triangleq \lambda i j. \alpha ji \), of dimension 2 to 2, with \(\Psi_0(\alpha) \triangleq [\lambda i. \alpha i, \lambda i i \alpha ii] \) and \(\Psi_1(\alpha) \triangleq [\lambda i i \alpha ii, \lambda i. \alpha ii ii] \);
- left (resp. right) connections: \(\Gamma^+(p) \) (resp. \(\Gamma^-(p) \)) which can be taken as axioms, of dimension 1 to 2, with both \(\Psi_0(p) \) and \(\Psi_1(p) \) being \([p, p^1] \) (resp. \([\tilde{p}, \tilde{p^1}] \));
- reversals/inverses: \(p^{-1} \) which can be taken as an axiom, of dimension 1 to 1 with \(\Psi_0(p) \triangleq p1 \) and \(\Psi_1(p) \triangleq p0 \);
- diagonals: \(\Delta(\alpha) \triangleq \lambda i. \alpha ii \), of dimension 2 to 1 with \(\Psi_0(p) \triangleq \alpha 00 \) and \(\Psi_1(p) \triangleq \alpha 11 \).

Operations from dimension 1 to some dimension \(p \) can be internalized as algebraic operations of arity \(p \) on the interval. For instance, reversal and connections can be obtained, as in [CCHM18], by extending the interval with \(\tau := \ldots | - \tau | - \tau \wedge \tau | - \tau \vee \tau \) and defining \(p^{-1} \triangleq \lambda i. p(-i) \), as well as \(\Gamma^+(p) \triangleq \lambda i j. p(i \wedge j) \) and \(\Gamma^-(p) \triangleq \lambda i j. p(i \vee j) \). Using iterated congruence, as defined by:

\[
\tilde{\Phi}^m(t) \triangleq \Phi(t) \quad \tilde{\Phi}^{m+1}(t) \triangleq \lambda i. \tilde{\Phi}^m(ti) \quad i \text{ taken fresh}
\]

any operation \(\Phi \) from dimension \(n \) can be extended into an operation \(\Phi_m \) acting on cubes of dimension at least \(m+n \). For instance, for \(\aleph \) of dimension \(q \geq 1 \) and \(0 \leq m < q \), \(\partial^+_{m}(:=) \triangleq \tilde{\partial}^+_m(:=) \) is the \(m \)-th left face operation of the cubical structure.

Note in passing that any \(n \)-cube of type \([\alpha_1, \ldots, \alpha_n] \approx \xi [\beta_1, \ldots, \beta_n] \) can alternatively be seen as a \(p \)-cube of type \([\alpha_{p+1}, \ldots, \alpha_n] \approx \xi [\beta_{p+1}, \ldots, \beta_n] \) \([\beta_1, \ldots, \beta_p] \) for \(0 \leq p \leq n \). Hence, any operation acting on a \(p \)-cube directly acts also on an \((p+q)\)-cube.

Operations can also be extended to take several arguments, with composition or tensor product as examples.

References