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Homotopy type theory (HoTT) extends Martin-Löf type theory with axioms for univalence and higher

inductive types, enabling a significant amount of homotopy theory to be developed synthetically [10]. When

rendered as axioms, these extensions disrupt the computational content of type theory, as witnessed by the

failure of canonicity: in HoTT, closed terms of natural number type do not necessarily simplify to numerals.

The failure of canonicity has affected the practicality of mechanization. A well-known example is the

fourth homotopy group of the 3-sphere, π4

(
S3

)
, which has been shown by Guillaume Brunerie to be Z/nZ for

some closed term n : N, but more sophisticated arguments were required to prove n is two [4]. If canonicity

held, a computer could have simplified n to two automatically.

To date, two univalent type theories enjoy the canonicity property: the cubical type theory of Cohen et

al. [6, 8], and our work on computational cubical type theory [2, 3, 5]. Both cubical type theories present

higher-dimensional structure using a cubical generalization of typehood and membership judgments,

represented syntactically through dependence on dimension variables.

Our contribution comes in twomain axes: the application of the computation-first methodology to cubical

type theory, and our use of Cartesian cubical structure. In this talk, I will discuss the basics of computational

type theory, the extensions to support features of cubical type theory, the differences from other cubical type

theories, and the proof assistants.

Computational type theory A computational type theory is not defined by a collection of inference rules,

but rather by a programming language and a collection of partial equivalence relations over values of that

language. In this style, the computational content of proofs is inevitable; the difficulty lies, instead, in proving

that each type former validates the expected formation, introduction, and elimination rules. Computational

type theory is therefore a bottom-up approach to canonicity, in the sense that computation is prior to typing.

This computation-first approach, pioneered by [7], makes clear how one can potentially integrate

homotopy type theory with other programming languages in computer science. We show the extended

theory can serve as a model of many variants of homotopy type theory, including two-level type theories

with both exact equalities and paths. We also have multiple proof assistants (such as [9]) under active

development.

Despite its achievements in modeling a wide range of type theories and its application in making

proof assistants, this computation-first approach to type theory has remained largely unknown or been

confused with “extensional type theory” or “equality reflection”, along with misconceptions on decidability

of type-checking. My talk will show unique technical advantages of this less known approach and hopefully

inspire new developments in homotopy type theory.

Cartesian cubes Another important contribution is that our type theory employs a Cartesian notion of

cube: dimension expressions are generated by face, diagonal, and degeneracy (weakening) maps, yielding

the free finite-product category generated by two distinct endpoint inclusions 1 ⇒ I. In contrast, Cohen

et al. [6] use a De Morgan notion of cubes that additionally has connections and reversals. Cartesian cubes

are appealing because they correspond precisely to a structural notion of dimension variable, subject to

exchange, weakening, and contraction.
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We equip types with two Kan operations: coercion and homogeneous Kan composition [1–3, 5]. Let A
be a type parametrized by a dimension variable x and r, r′ be two dimension expressions. Coercion sends

elements of type A〈r/x〉 to those of type A〈r′/x〉, witnessing the continuity of such a parametrized type

from x � r to x � r′. Homogeneous Kan composition specifies that every open box can be filled. For instance,

given the y � 0, x � 0, and x � 1 sides of a x , y-square that agree where they overlap, there is a y � 1 side

(the composite) that agrees with the specified sides and a square that agrees with all four faces. In order to

define univalent universes supporting these Kan operations, we crucially allow open boxes consisting not

only of faces (x � 0, 1) but also diagonals (x � z).
Cohen et al. [6] use only one combined Kan operation with forward direction (0 to 1), but with connections

and reversals are able to derive other compositions. In comparison, we do not have connections or reversals,

but more primitive compositions (forward, backward, filling and more) to complete the construction. It is

interesting to see how these technical differences might affect the efficiency of computing programs such as

the n in the π4

(
S3

)
' Z/nZ.
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