
Unfolding FOLDS

Matthew Weaver and Dimitris Tsementzis

Princeton Rutgers

HoTT/UF Workshop
Sept. 9, 2017



The Syntax of Syntax

• Type theory has a rich syntax…


• …which is why we love it!


• …and is also what makes everything difficult

2



The Syntax of Syntax

• We often encounter the situation where we can define a 
construct in the metatheory, but not internally


• Challenge: Let’s make type theory express its own 
metatheory


• Bonus Challenge: Let’s do so in a way that is well-typed 
and preserves logical consistency

3



Let's make type 
theory eat itself!



The Syntax of Syntax
• Meta-programming and reflection are already everywhere


Tactic languages in proof assistants:


5



The Syntax of Syntax

6

• Meta-programming and reflection are already everywhere


Generic programming over datatypes:




The Syntax of Syntax

7

• Meta-programming and reflection are already everywhere


Reflection of abstract syntax:




The Syntax of Syntax

8

d

dx

x

n = nx

n�1

• Meta-programming and reflection are already everywhere


Classical mathematics:




The Syntax of Syntax

• In many cases, it is an untrusted extension of the theory 
that can break its good properties

9



The Syntax of Syntax

• We define a univalent type theory that can safely 
manipulate and interpret (some of) its own syntax


• Using this, we propose a novel approach to defining the 
type of semi-simplicial types


• We also describe a general framework to describe the 
semantics of reflection in type theory

10



What are  
Semi-Simplicial Types?

• A “0-dimensional triangle” is a point


• A “1-dimensional triangle” is a line


• A “2-dimensional triangle” is a triangle


• A “3-dimensional triangle” is a pyramid/
tetrahedron made from 4 triangles, etc…

11



What are  
Semi-Simplicial Types?

• Consider a type of points T₀


• For any two terms (i.e. points) x and y in T₀, 
there is a type T₁ x y of lines between x and y


• For any three points x, y and z, and three 
lines a : T₁ x y, b : T₁ y z and c : T₁ x z, there 
is a type T₂ a b c of triangles outlined by a, b 
and c


• etc… 

12



What are  
Semi-Simplicial Types?

Σ T₀ : Type, 


Σ T₁ : (Π x y : T₀, Type),


Σ (T₂ : Π (x y z : T₀) (a : T₁ x y) (b : T₁ y z) (c : T₁ x z), Type),


etc… 

13



What are  
Semi-Simplicial Types?

• The type of n-truncated semi-simplicial types (sstₙ) is 
given by ΣT₀, ΣT₁, …, Tₙ


• It is a known result that type of semi-simplicial types is 
the homotopy limit of sstₙ over n : ℕ [ACS15]


• The homotopy limit is constructed with the following 
syntax where where πₙ is the obvious projection from 
sstₙ₊₁ to sstₙ:


• a

14

X

(x:⇧(n:N)sstn)

Y

(n:N)
⇡

n

x

n+1 = x

n



What are  
Semi-Simplicial Types?

• Defining the function sst : ℕ → Type picking out the n-
truncated semi-simplicial type proves challenging:


• All the dependencies in the types require proving 
equalities on terms of arbitrary types…


• …which require proving equalities on proofs of 
equalities of terms of arbitrary types…


• …and then proving equalities on proofs of equalities of 
proofs of equalities of terms of arbitrary types… 


• …etc…

15



What is FOLDS?
• First Order Logic with Dependent Sorts: FOL where sorts can 

be indexed by elements of other sorts (i.e. dependent types)


• A FOLDS Signature is a context of dependent sorts 
(equivalently a Finite Inverse Category)


• Example: Cat

  O : Sort

  A : O × O → Sort

  I  : Π x : O, A x x → Sort


• Note: The type of n-truncated semi-simplicial types is such a 
signature with a sort for each dimension

16



Our Theory

• T T+I is a type theory that includes:


• Π-types, Σ-types, id-types, ℕ, 1


• A type Sig of FOLDS signatures 


• An interpretation function I : Sig → Type

17



Our Theory
• The type Sig of well-formed FOLDS signatures is built using the 

following:


• Sig : Type is a list of well-formed contexts Ctx, each representing a 
sort by its dependencies 


• Ctx : Sig → Type is a list of sorts previously defined in the signature 

18

• Example: representing Cat : Sig


Cat ≔ O : ∙, A : (c : O, d : O), I : (x : O, i : A x x)



• The type Sig of well-formed FOLDS signatures is built using the 
following:


• Sig : Type is a list of well-formed contexts Ctx, each representing a 
sort by its dependencies 


• Ctx : Sig → Type is a list of sorts previously defined in the signature


• …a couple other helper types 


• Sig and Ctx are both h-sets (along with the other types)


• Complete definition is a quotient-inductive-inductive type in Agda à la 
type theory in type theory [AK16]

Our Theory

19



Our Theory
• The type Sig of well-formed FOLDS signatures is built using the 

following:


• Sig : Type is a list of well-formed contexts Ctx, each representing a 
sort by its dependencies 


• Ctx : Sig → Type is a list of sorts previously defined in the signature 

20

• The interpretation function I : Sig → Type is defined as


I(Γ₀, Γ₁, …, Γₙ) ≔ Σ(T₀:⟦Γ₀⟧→Type), Σ(T₁:⟦Γ₁⟧→Type), …, ⟦Γₙ⟧→Type



Our Theory

21

• Example: representing Cat in Sig


Cat ≔ O : ∙, A : (c : O, d : O), I : (x : O, i : A x x)   


I(Cat) ≔ Σ(O : Type), Σ(A : O × O → Type), (Σ(x : O), A(x, x)) → Type

• The interpretation function I : Sig → Type is defined as


I(Γ₀, Γ₁, …, Γₙ) ≔ Σ(T₀:⟦Γ₀⟧→Type), Σ(T₁:⟦Γ₁⟧→Type), …, ⟦Γₙ⟧→Type



Defining Semi-Simplicial 
Types

1. Define sst' : ℕ → Sig, picking out the n-truncated semi-
simplicial type leveraging the strictness of Sig and Ctx


2. sst : ℕ → Type ≔ I ∘ sst' 


3.  a

22

X

(x:⇧(n:N)sstn)

Y

(n:N)
⇡

n

x

n+1 = x

n



How is this Reflection?

• Sig is a datatype representing the abstract syntax of the 
types corresponding to well-formed FOLDS signatures


• I is the interpretation function decoding terms of Sig into 
the types they represent


• Note: we only decode representations of terms, and 
never encode actual terms

23



So, what does this 
theory even mean?



Decoding the Universe(s)

• (Informal) Definition: A universe (à la Tarski) consists of a 
type U along with a decode function el : U → Type


• Our type Sig with interpretation function I is such a 
universe!

25



Decoding the Universe(s)
• (incomplete) Definition: Fix a category 𝒞. A category 

with families (CwF) is a model of type theory with contexts 
given by 𝒞 described by the following data:


• A presheaf Ty : 𝒞ᵒᵖ → Set, where Ty(Γ) is the set of all 
well-formed types in context Γ


• A presheaf Tm : ∫Tyᵒᵖ → Set, where Tm(Γ, A) is the set of 
all well-typed terms of type A in context Γ


• ∫Ty is the category of elements of Ty, consisting of pairs 
of contexts and well-formed types in that context

26



Decoding the Universe(s)
• Definition: Fix a CwF with presheaves Ty : 𝒞ᵒᵖ → Set, and 

Tm : ∫Tyᵒᵖ → Set. A universe is given by


• A presheaf U : 𝒞ᵒᵖ → Set, 


• A decoding natural transformation el : U → Ty,


• Types UΓ ∈ Ty(Γ) for every Γ ∈ 𝒞 where Tm(Γ, UΓ) = U(Γ) 
and the action of morphisms on the UΓ is given by U 


• Definition appears as 2-level CwF derived from a universe 
in Paolo’s thesis [Cap17]

27



So, what does this 
theory even mean?

…we’ve also defined a 2-level type theory.



Decoding the Universe(s)

• While this notion of a universe can express adding a 
second universe with a strict equality on its codes of 
types, it doesn’t provide a way to model strictness on 
(representations of) terms 


• Captures Sig, but not the other types used to build Sig/
their strictness 

29



From Universes to Reflection: 
(Idealized) Semantics

• Definition: A type theory with reflection is given by 


• a category with families (Ty, Tm) with universe (U, el)


• a presheaf R : ∫Uᵒᵖ → Set 


• a natural transformation i : el[R] → Tm


• Here el[—] denotes the functor                                    
(∫Uᵒᵖ → Set) → (∫Tyᵒᵖ → Set) induced by el


• elements AΓ ∈ Ty(Γ) for every Γ ∈ 𝒞 and A ∈ U(Γ) such that 
Tm(Γ, AΓ) = R(Γ, A)

30



From Universes to Reflection: 
(Idealized) Semantics

• Haven’t yet worked out if/how T T+I is a model of a type 
theory with reflection 


• Part of what makes Sig powerful is it has an inductor. Not 
(yet) generalized in semantics I’ve proposed


• The presence of an inductor is often assumed when 
one thinks of reflection of abstract syntax in general


• Can this be used to model more extensive (and safe!) 
reflection of abstract syntax in (univalent) type theory?

31



Connection to  
2-Level Type Theory

• 2-Level Type Theory begins with MLTT+Axiom-K, and 
adds a second univalent universe that decodes into MLTT


• MLTT+Axiom-K has two equality types: the strict one 
with axiom-K, and the one used to decode the equality 
of the univalent universe


• We begin with HoTT and add a second strict universe that 
decodes into HoTT


• We have a single univalent equality type

32



Some Future Work
• Finish defining T T+I, implement it and define the type of 

semi-simplicial types


• Investigate simpler theories that can define the type of 
semi-simplicial types and only have one notion of equality


• Investigate whether definition of type theory with 
reflection makes any sense


• If so, see what other interesting theories it models

33



Takeaways

• Make a (nonstandard) universe in which difficult problems 
are easy!


• Safe/consistent reflection in (univalent) type theory is both 
interesting and possible  

34



References

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus, Extending homotopy type theory with strict equality, 
25th EACSL Annual Conference on Computer Science Logic 21 (2016), 1–17.
[ACK17] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus, Two-level type theory and applications, arXiv preprint 
arXiv:1705.03307 (2017).
[ACS15] Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti, Non-wellfounded trees in homotopy type theory, arXiv 
preprint arXiv:1504.02949 (2015).
[AK16] Thorsten Altenkirch and Ambrus Kaposi, Type theory in type theory using quotient inductive types, ACM 
SIGPLAN Notices 51 (2016), no. 1, 18–29.
[Cap17] Paolo Capriotti, Models of Type Theory with Strict Equality, PhD Thesis (2017).
[Her15] Hugo Herbelin, A dependently-typed construction of semi-simplicial types, Mathematical Structures in 
Computer Science 25 (2015), no. 5, 1116–1131.
[TW17] Dimitris Tsementzis and Matthew Weaver, Finite Inverse Categories as Dependently Typed Signatures, arXiv 
preprint arXiv:1707.07339 (2017).

35



Unfolding FOLDS

Matthew Weaver and Dimitris Tsementzis

Princeton Rutgers

HoTT/UF Workshop
Sept. 9, 2017


