Unfolding FOLDS

HoTT/UF Workshop
Sept. 9, 2017

Matthew Weaver and Dimitris Tsementzis

\\\V///#

Princeton Rutgers




The Syntax of Syntax

e Type theory has arich syntax...
e ...whichis why we love it!

e ...and is also what makes everything difficult



The Syntax of Syntax

o \We often encounter the situation where we can define a
construct in the metatheory, but not internally

 Challenge: Let’'s make type theory express its own
metatheory

* Bonus Challenge: Let’s do so in a way that is well-typed
and preserves logical consistency



Let's make type
theory eat itself!




The Syntax of Syntax

e Meta-programming and reflection are already everywhere

Tactic languages in proof assistants:

Definition PreShv_to _slice_1s funct : 1s_functor PreShv_to _slice_data.
Proof.
split; [intros X | intros X Y Z f g];
apply eq_mor_slicecat;
apply (nat_trans_eq has_homsets_HSET);
unfold PreShv_to_slice_ob_nat , PreShv_to_slice_ob_funct_fun;
intro c;
apply funextsec; intro p;
now rewrite tppr.
Defined.



The Syntax of Syntax

e Meta-programming and reflection are already everywhere

Generic programming over datatypes:



The Syntax of Syntax

e Meta-programming and reflection are already everywhere

Reflection of abstract syntax:

idNat : Nat -> Nat

idNat = %runElab (do intro " {{x}}
fill (Var " {{x}})
solve)



The Syntax of Syntax

e Meta-programming and reflection are already everywhere

Classical mathematics:



The Syntax of Syntax

 |n many cases, it is an untrusted extension of the theory
that can break its good properties



The Syntax of Syntax

 We define a univalent type theory that can safely
manipulate and interpret (some of) its own syntax

e Using this, we propose a novel approach to defining the
type of semi-simplicial types

e \We also describe a general framework to describe the
semantics of reflection in type theory

10



What are
Semi-Simplicial Types?

A “0O-dimensional triangle” is a point

A “1-dimensional triangle” is a line

A “2-dimensional triangle” is a triangle

A “3-dimensional triangle” is a pyramid/
tetranhedron made from 4 triangles, etc...

11



What are
Semi-Simplicial Types?

Consider a type of points T,

For any two terms (i.e. points) x and y in T,
there is a type T, x y of lines between x and vy

For any three points x, y and z, and three
inesa: T;xy,b:T;yzandc: T, xz there
Is a type T, a b c of triangles outlined by a, b
and c

etc...

12



What are
Semi-Simplicial Types?

> To: Type,
2 T4 (M xy:To, Type),

2 (To:MMxyz:Tgp@: Tyxy)(b:Tyy2z(c:T;x2), Type),

etc...

13



What are
Semi-Simplicial Types?

* The type of n-truncated semi-simplicial types (sstn) is
given by 2T,, 214, ..., Tn

e |tis a known result that type of semi-simplicial types is
the homotopy limit of sstn over n : N [ACS15]

e The homotopy limit is constructed with the following
syntax where where 11n Is the obvious projection from

SStn,¢ tO sstn:
E H MTndnt+1 — In

(z:I1(p:nyS8ty ) (n:N)

14



What are
Semi-Simplicial Types?

e Defining the function sst : IN — Type picking out the n-
truncated semi-simplicial type proves challenging:

All the dependencies in the types require proving
equalities on terms of arbitrary types...

...which require proving equalities on proofs of
equalities of terms of arbitrary types...

...and then proving equalities on proofs of equalities of
proofs of equalities of terms of arbitrary types...

...etc...

15



What is FOLDS?

First Order Logic with Dependent Sorts: FOL where sorts can
be indexed by elements of other sorts (i.e. dependent types)

A FOLDS Signature is a context of dependent sorts
(equivalently a Finite Inverse Category)

Example: Cat

O : Sort
A:0Ox0O — Sort
| :T1x:0, AxXx — Sort

Note: The type of n-truncated semi-simplicial types is such a
sighature with a sort for each dimension

16



Our Theory

e [T+l is atype theory that includes:
* [l-types, 2-types, id-types, I\, T
* A type Sig of FOLDS signatures

* An interpretation function | : Sig — Type

17



Our Theory

* The type Sig of well-formed FOLDS signatures is built using the
following:

e Sig: Type is a list of well-formed contexts Ctx, each representing a
sort by its dependencies

e Cix: Sig — Type is a list of sorts previously defined in the signature

* Example: representing Cat : Sig

Cat=0:-,A:(c:0,d:0),1:(x:0,1:AXX)

18



Our Theory

* The type Sig of well-formed FOLDS signatures is built using the
following:

e Sig: Type is a list of well-formed contexts Ctx, each representing a
sort by its dependencies

e Cix: Sig — Type is a list of sorts previously defined in the signature
e ...acouple other helper types
e Sig and Ctx are both h-sets (along with the other types)

e Complete definition is a quotient-inductive-inductive type in Agda a la
type theory in type theory [AK106]

19



Our Theory

* The type Sig of well-formed FOLDS signatures is built using the
following:

e Sig: Type is a list of well-formed contexts Ctx, each representing a
sort by its dependencies

e Cix: Sig — Type is a list of sorts previously defined in the signature

* The interpretation function | : Sig — Type is defined as

(Mo, [+, ..., [n) = 2(To:[Mo1Type), 2(T+:[M1 1 Type), ..., [I'n]—=Type

20



Our Theory

* The interpretation function | : Sig — Type is defined as

I(Co, T4, ..., Tn) = 2(To:[T oI Type), Z(T+:[I 11— Type), ..., [[n]—>Type

* Example: representing Cat in Sig
Cat=0:-,A:(c:0,d:0),1:(x:0,1:AXX)

|(Cat) = 2(O : Type), 2(A : O x O = Type), (Z(x : O), A(X, X)) = Type

21



1.

2.

3.

Defining Semi-Simplicial
Types

Define sst' : N — Sig, picking out the n-truncated semi-
simplicial type leveraging the strictness of Sig and Ctx

sst: N — Type = | - sst'

5 H Tndn+1 = Ln

(z:I1(5.nyS8ty ) (n:N)

22



How Is this Reflection?

e Sig is a datatype representing the abstract syntax of the
types corresponding to well-formed FOLDS signatures

e | is the interpretation function decoding terms of Sig into
the types they represent

* Note: we only decode representations of terms, and
never encode actual terms

23



So, what does this
theory even mean?



Decoding the Universe(s)

e (Informal) Definition: A universe (a la Tarski) consists of a
type U along with a decode function el : U — Type

e QOur type Sig with interpretation function | is such a
universe!

25



Decoding the Universe(s)

* (incomplete) Definition: Fix a category C. A category
with families (CwF) is a model of type theory with contexts
given by € described by the following data:

* A presheaf Ty : C°P — Set, where Ty(I') is the set of all
well-formed types in context [

A presheaf Tm: [Ty°P — Set, where Tm([", A) is the set of
all well-typed terms of type A in context [

e |Ty is the category of elements of Ty, consisting of pairs
of contexts and well-formed types in that context

20



Decoding the Universe(s)

* Definition: Fix a CwF with presheaves Ty : €°P — Set, and
Tm : |Ty°P — Set. A universe is given by

e A presheaf U : G — Set,

* A decoding natural transformation el : U — Ty,

e Types Ure Ty(I') for every I € € where Tm([', Ur) = U(I')
and the action of morphisms on the U- is given by U

* Definition appears as 2-level CwF derived from a universe
in Paolo’s thesis [Cap17]

27



So, what does this
theory even mean?

...we’ve also defined a 2-level type theory.



Decoding the Universe(s)

* While this notion of a universe can express adding a
second universe with a strict equality on its codes of
types, it doesn’t provide a way to model stricthess on
(representations of) terms

e Captures Sig, but not the other types used to build Sig/
their strictness

29



From Universes to Reflection
(ldealized) Semantics

e Definition: A type theory with reflection is given by
e a category with families (Ty, Tm) with universe (U, el)
e apresheaf R: [U°% — Set
* a natural transformationi: el[R] = Tm

e Here el[—] denotes the functor
(JU°P — Set) — (|Ty°P — Set) induced by el

e elements Are Ty() forevery I € € and A € U(I') such that
™Tm(l, A) =R(, A)

30



From Universes to Reflection:
(ldealized) Semantics

e Haven’t yet worked out if/how TT+l is a model of a type
theory with reflection

e Part of what makes Sig powerful is it has an inductor. Not
(yet) generalized in semantics I’ve proposed

e The presence of an inductor is often assumed when
one thinks of reflection of abstract syntax in general

e (Can this be used to model more extensive (and safe!)
reflection of abstract syntax in (univalent) type theory?

31



Connection to
2-Level Type Theory

e 2-Level Type Theory begins with MLT T+Axiom-K, and
adds a second univalent universe that decodes into MLTT

e MLTT+Axiom-K has two equality types: the strict one
with axiom-K, and the one used to decode the equality
of the univalent universe

* We begin with HoTT and add a second strict universe that
decodes into HoTT

* We have a single univalent equality type

32



Some Future Work

* Finish defining T T+|, implement it and define the type of
semi-simplicial types

* Investigate simpler theories that can define the type of
semi-simplicial types and only have one notion of equality

* |Investigate whether definition of type theory with
reflection makes any sense

* |f so, see what other interesting theories it models

33



Takeaways

* Make a (honstandard) universe in which difficult problems
are easy!

o Safe/consistent reflection in (univalent) type theory is both
interesting and possible

34



References

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus, Extending homotopy type theory with strict equality,
25th EACSL Annual Conference on Computer Science Logic 21 (2016), 1-17.

[ACK17] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus, Two-level type theory and applications, arXiv preprint
arXiv:1705.03307 (2017).

[ACS15] Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti, Non-wellfounded trees in homotopy type theory, arXiv
preprint arXiv:1504.02949 (2015).

[AK16] Thorsten Altenkirch and Ambrus Kaposi, Type theory in type theory using quotient inductive types, ACM
SIGPLAN Notices 51 (2016),no. 1, 18-29.

[Cap17] Paolo Capriotti, Models of Type Theory with Strict Equality, PhD Thesis (2017).

[Her15] Hugo Herbelin, A dependently-typed construction of semi-simplicial types, Mathematical Structures in
Computer Science 25 (2015),no. 5, 1116-1131.

[TW17] Dimitris Tsementzis and Matthew Weaver, Finite Inverse Categories as Dependently Typed Signatures, arXiv
preprint arXiv:1707.07339 (2017).

35



Unfolding FOLDS

HoTT/UF Workshop
Sept. 9, 2017

Matthew Weaver and Dimitris Tsementzis

\\\V///#

Princeton Rutgers




