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Abstract. We explain the basic idea of two-level type theory [1, 2], a version of Martin-Löf
type theory with two equality types: the first acts as the usual equality of homotopy type
theory, while the second allows us to reason about strict equality. In this system, we can
formalise results of partially meta-theoretic nature. We demonstrate how we have implemented
such results [2] in the proof assistant Lean.

Motivation. The motivation for two-level type theory is twofold.
Many results of homotopy type theory are completely internal to HoTT and can be for-

malised directly in a proof assistant, and a lot of work has been done using Agda, Coq, and
Lean. Some other results are only partially internal to HoTT. One example is the construction
of n-restricted semisimplicial types which we can do only after fixing a number n externally (i.e.
we have to decide which n we use before we start writing it down in Agda). Another example is
the work by Shulman on inverse diagrams [5], where we can do constructions in type theory once
we fix a (finite) inverse category in the meta-theory. In many situations, one would like such
constructions to be completely internal (using a variable n : N or an inverse category expressed
internally) and formalisable in a proof assistant, but unfortunately, it is either unknown how
this is doable or it is known to be impossible. Two-level type theory gives a way to completely
formalise such results. This is the aspect that we explore in our paper [2].

A second motivation of two-level type theory is that it allows to extend homotopy type theory
in a “controlled” way. It gives a framework which makes it easy to write down enhancements of
the theory, and one can relatively easily check whether these assumptions hold in some models
(models are explored in [3]).

Two-Level Type Theory. Two level type theory consists of two fragments: a strict fragment
(a form of MLTTwith UIP) and a fibrant fragment (essentially HoTT). The fibrant fragment
of our type theory has all the basic types and type formers found in HoTT [6, Appendix A.2]:
1, 0, N, = (the equality type), Π, Σ, +, along with a hierarchy U0,U1, . . . of universes, and
possibly inductive and higher inductive types. The strict fragment has 0s, Ns, +s, s

= (the strict
equality), a hierarchy U s

0,U s
1, . . . of strict universes. Type formers Π, Σ and the unit type 1 are

shared by the two theories.
We refer to the elements of Ui as fibrant types, while the elements of U s

i are pretypes. The
intuition is that fibrant types are the usual types that are found in HoTT, whereas pretypes
are what one gets if one is allowed to talk about strict equality internally. In other words, strict
equality serves as an internalised version of judgmental equality. These ideas of differentiating
pretypes and fibrant types is inspired by Voevodsky’s Homotopy Type System (HTS) [7], but
there are some important differences. In particular, two-level type theory does not assume the
reflection rule for the strict equality. Instead, we only require that it satisfies UIP. Another
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important difference is that HTS assumes that 0, N and + from the fibrant fragment eliminate
to arbitrary types. We are more minimalistic and do not hard-wire this principle in the theory
as none of our results require it, although such assumptions can be added easily.

Applications and Results. In our paper [2], we develop some of the theory on inverse
diagrams in two-level type theory to demonstrate how arguments that traditionally have to be
done meta-theoretically can be expressed in a uniform type-theoretic way. A special case are
semisimplicial types, which in our setting can be worked with internally. As an application,
we show how to define the notion of complete semi-Segal type, which is a way to capture and
study categorical structures built with types of arbitrary truncation levels (usually referred to
as (∞, 1)-categories), such as universes of fibrant types, and the ∞-groupoid associated to any
fibrant type.

Formalisation. For the formalisation1 of two-level type theory we have chosen to use the
Lean proof assistant [4], although the overall idea of our implementation approach should be
suitable for many existing proof assistants.2 We work in “strict” Lean mode, which provides
us with a close enough approximation for the strict fragment of two-level type theory. Fibrant
types are implemented as a record type Fib with two fields: a pretype, and the property that
it is fibrant. The is_fibrant property is defined using the type class mechanism provided by
the language. Lean coercions are used to implement the rule that every fibrant type is also a
pretype. The class instance resolution mechanism allows us to leave the property of being fibrant
implicit in most cases. The fibrant equality type (i.e. the “HoTT equality”) is a type family that
we define ourselves, together with its eliminator J . The β-rule for J is postulated using Lean’s
propositional equality type, and reductions do therefore not always happen automatically. This
issue can partially be resolved using proof automation techniques, but there are some cases
when the need for the explicit application of the computation rule makes definitions awkward
to work with.

Nevertheless, this setup allows us to experiment with two-level type theory in a currently
available proof assistant, and our experience is that this works reasonably well. We demonstrate
how one can use the fibrant fragment of two-level type theory to develop proofs in HoTT by
formalising simple lemmas from the Lean HoTT library. Our experience shows that many
proofs can be reused almost without change, provided that the same notation is used for basic
definitions. As an example of the internalisation of meta-theoretic reasoning, we implemented
the proof that, for I a finite inverse category and D : I → U a Reedy fibrant diagram, the limit
of D is a fibrant type again [5].
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