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In traditional modal logic, a modality is a unary operation on propositions.
The classical examples are 2 (“it is necessary that”) and ♦ (“it is possible that”).
In type theory and particularly dependent type theory, such as homotopy type
theory, where propositions are regarded as certain types, it is natural to extend
the notion of modality to a unary operation on types. For emphasis we may
call this a “typal modality”, or a “higher modality” since it acts on the “higher
types” available in homotopy type theory (not just “sets” but types containing
higher homotopy).

We take a first step towards the study of higher modalities in homotopy
type theory [3], restricting our attention to idempotent, monadic ones. These
are especially convenient they can be described using the universal property
of a reflector into a subuniverse. Another reason is that in good situations,
an idempotent monad can be extended to all slice categories consistently, and
thereby represented “fully internally” in type theory as an operation # : U→ U
on a type universe. Our theory of modalities can be (and has been) formalized
in the Coq proof assistant.

We give four equivalent characterizations of modalites: (1) higher modalities,
(2) uniquely eliminating modalities, (3) Σ-closed reflective subuniverses, and (4) stable
orthogonal factorization systems. For the purpose of this abstract, we give just the
definition of a Σ-closed reflective subuniverse: A reflective subuniverse consists
of a subuniverse isModal : U→ Prop and an operation # : U→ U, and a modal
unit η : ∏(X:U) X → #X, subject to the following conditions:

(i) for any X : U one has isModal(#X).
(ii) for any X, Y : U such that isModal(Y), the precomposition map

λg. g ◦ ηX : (#X → Y)→ (X → Y)

is an equivalence.
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A reflective subuniverse is said to be Σ-closed if for any X : U such that
isModal(X), and any Y : X → U such that ∏(x:X) isModalY(x), one has

isModal
(

∑(x:X) Y(x)
)

.

Examples of modalities include the n-truncations, for any proposition Q the open
modality X 7→ XQ and the closed modality X 7→ Q ∗ X (where the join Q ∗ X is
defined as the pushout of the span Q← Q× X → X), and the double negation
modality X 7→ ¬¬X.

An important class of reflective subuniverses is that of the accessible reflective
subuniverses, which is presented as the subuniverse of types X that are F-local
for a family of maps F : ∏(a:A) B(a)→ C(a), in the sense that for each a : A, the
precomposition map

λg. g ◦ F(a) : (C(a)→ X)→ (B(a)→ X)

is an equivalence. The operations of F-localization is defined as a higher inductive
type, which makes the subuniverse of F-local types into a reflective subuniverse.
In the special case where each C(a) is contractible, we call the localization
operation B-nullification, and we show that B-nullification is always a higher
modality by showing that the subuniverse of B-null types is Σ-closed.

Specializing further, we show that nullification at a family of propositions
always gives a lex modality, which is a modality that preserves pullbacks. We
give several equivalent characterizations of lex modalites. Among those is the
condition that the subuniverse of modal types is again a modal type. Since
general reflective subunverses are already closed under Σ, Π, and Id, this shows
that lex modalities fully model type theory, including the universe. This is not
the case for ordinary modalities (for instance, the type of all propositions is not
a proposition).

Assuming that Prop is a small type, we obtain Lawvere-Thierney topologies
as class of examples. In particular, the double negation sheaf modality is defined
by nullifying at the propositions P for which ¬¬P holds.

We end the paper by proving a general “fracture and gluing” theorem
for a pair of modalities, which has as a special case the “Artin gluing” of a
complementary closed and open subtopos. Let ♦ be a lex modality, and let # be
a modality such that the ♦-modal types coincide with the #-connected types.
Then we show that the trivial modality is the join of ♦ and # in the poset of
reflective subuniverses, and that every canonical fracture square
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associated to A is a pullback square. Moreover, we obtain an induced equiva-
lence

U ' ∑(B:U#) ∑(C:U♦)
(C → ♦B)

We call this a “fracture theorem” because it appears formally analogous to
the fracture theorems for localization and completion at primes in classical
homotopy theory [2], or more generally for localization at complementary
generalized homology theories [1].
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