Fibred Fibration Categories

Taichi Uemura

June 26, 2016

Fibred type-theoretic fibration categories

A "good" notion of fibred category between categorical models of dependent type theory.

- Construct total type-theoretic structure from fiberwise one
- Change of base

Application
Categorical description of "logical relations" [Hermida, 1993] on HoTT.
Theorem
$t: \Pi_{A: u} \Pi_{x: A} x=x \rightarrow x=x$ is homotopic to
$\lambda(p: x=x) . p^{n}$ for some $n \in \mathbb{Z}$.

Type-theoretic fibration categories

Type-theoretic fibration categories [Shulman, 2015] are sound and complete categorical models of Martin-Löf's intentional theory.

- A category \mathbb{C} equipped with specific morphisms called fibrations corresponding to type families.
- Path induction is modeled by the lifting property.

$$
\begin{gathered}
A \longrightarrow X \\
\operatorname{refi}_{A}=\mathrm{Id}_{A}
\end{gathered}
$$

- A morphism like refl is called an acyclic cofibration.

Fibred type-theoretic fibration categories

 A fibred type-theoretic fibration category is a fibred category $p: \mathbb{E} \rightarrow \mathbb{B}$ such that:1. \mathbb{E} and \mathbb{B} are type-theoretic fibration categories and p preserves all structures of type-theoretic fibration category.
2. A fibration in \mathbb{E} factors as a vertical fibration followed by a horizontal fibration.

3. Every Cartesian morphism above an acyclic cofibration is an acyclic cofibration.

Proposition

A fibred category $p: \mathbb{E} \rightarrow \mathbb{B}$ is a fibred type-theoretic fibration category if and only if:

1. \mathbb{B} and all fibers \mathbb{E}_{α} are type-theoretic fibration categories.
2. For any morphism $u: \alpha \rightarrow \beta$ in \mathbb{B}, $u^{*}: \mathbb{E}_{\beta} \rightarrow \mathbb{E}_{\alpha}$ is a strong fibration functor.
3. For every acyclic cofibration $u: \alpha \stackrel{\sim}{\hookrightarrow} \beta$ and fibration $f: Y \rightarrow X$ in \mathbb{E}_{β}, $u^{*}: \mathbb{E}_{\beta} / X(X, Y) \rightarrow \mathbb{E}_{\alpha} / u^{*} X\left(u^{*} X, u^{*} Y\right)$ is surjective.
4. For every fibration $u: \alpha \rightarrow \beta$ in \mathbb{B}, $u^{*}: \mathbb{E}_{\beta} \rightarrow \mathbb{E}_{\alpha}$ has a right adjoint u_{*} satisfying the "Beck-Chevalley condition".

Proof of the Proposition, syntactically

A fully categorical proof is in arXiv:1602.08206. I give a syntactic description.
A fibred category $p: \mathbb{E} \rightarrow \mathbb{B}$ models a type theory with two sorts Kind and Type.

$$
\begin{array}{ll}
\text { Category theory } & \text { Type theory } \\
\hline \alpha \in \mathbb{B} & \alpha: \text { Kind } \\
X \in \mathbb{E}_{\alpha} & X: \alpha \rightarrow \text { Type }
\end{array}
$$

The Proposition says the pairs of
($\alpha:$ Kind, $X: \alpha \rightarrow$ Type) form a new type theory.

Proof of the Proposition, syntactically

Concepts Definition

type $\quad(\alpha:$ Kind, $X: \alpha \rightarrow$ Type $)$
element $\quad(a: \alpha, x: X(a))$
family
($\beta: \alpha \rightarrow$ Kind,
$Y: \Pi_{a: \alpha} \beta(a) \rightarrow X(a) \rightarrow$ Type $)$
section $\quad\left(u: \Pi_{a: \alpha} \beta(a)\right.$,
$\left.f: \Pi_{a: \alpha} \Pi_{x: X(a)} Y(a, u(a), x)\right)$
pair

$$
\left((a, b): \sum_{a: \alpha} \beta(a),\right.
$$

identity type ?

$$
\left.(x, y): \Sigma_{x: X(a)} Y(a, b, x)\right)
$$

Proof of the Proposition, syntactically

We need the path induction on an identity kind w.r.t. any type family over the identity kind.

$$
\begin{aligned}
& \alpha: \text { Kind } \\
& X: \Pi_{a, a^{\prime}: \alpha} a=a^{\prime} \rightarrow \text { Type } \\
& x: \Pi_{a: \alpha} X\left(a, a, \text { refl }_{a}\right) \\
& \text { ind }_{{ }_{\alpha}}(X, x): \Pi_{a, a^{\prime}: \alpha} \Pi_{p: a=a^{\prime}} X\left(a, a^{\prime}, p\right) \\
& \text { ind }_{=_{\alpha}}\left(X, x, a, a, \text { refl }_{a}\right) \equiv x
\end{aligned}
$$

In particular, for α : Kind, $X: \alpha \rightarrow$ Type and $p: a={ }_{\alpha} a^{\prime}$, we have the transport along p $p_{*}: X(a) \rightarrow X\left(a^{\prime}\right)$.

Proof of the Proposition, syntactically

The identity type of (α : Kind, $X: \alpha \rightarrow$ Type) is the pair of

- $=: \alpha \rightarrow \alpha \rightarrow$ Kind and
- $\lambda a a^{\prime} p x x^{\prime} . p_{*} x=x^{\prime}: \Pi_{a, a^{\prime}: \alpha} \Pi_{p: a=a^{\prime}} X(a) \rightarrow$ $X\left(a^{\prime}\right) \rightarrow$ Type.
It is the type of "path over path" but in different sorts.

Universes in a fibred setting

Let \mathcal{U} : Kind and \mathcal{V} : Type be universes of kinds and types. Then $(\mathcal{U}, \lambda(\alpha: \mathcal{U}) \cdot \alpha \rightarrow \mathcal{V})$ is a universe in the new type theory if, for any $\alpha: \mathcal{U}$ and $X: \alpha \rightarrow \mathcal{V}$, $\Pi_{a: \alpha} \cdot X(a): \mathcal{V}$. Its elements are $(\alpha: \mathcal{U}, X: \alpha \rightarrow \mathcal{V})$.

Equivalences in a fibred setting

For $\left(u: \alpha \rightarrow \beta, f: \Pi_{a: \alpha} X(a) \rightarrow Y(u(a))\right)$, An element of is-equiv (u, f) is (v : homotopy inverse of u, g : homotopy inverse of f above v).
Lemma
Suppose the function extensionality holds. Then

$$
\operatorname{is-equiv}(u, f) \simeq\left(\operatorname{is-equiv}(u), \lambda_{-} . \Pi_{a: \alpha} \operatorname{is-equiv}\left(f_{a}\right)\right)
$$

for all $\left(u: \alpha \rightarrow \beta, f: \Pi_{\mathrm{a}: \alpha} X(a) \rightarrow Y(u(a))\right)$ in the new type theory.

Univalence in a fibred setting

A universe U in a type theory is univalent if the canonical map
$\lambda(A: U) \cdot\left(A, A, \mathrm{id}_{A}\right): U \rightarrow \Sigma_{A, A^{\prime}: U} A \simeq A^{\prime}$ is an equivalence.
The new universe $(\mathcal{U}, \lambda(\alpha: \mathcal{U})$. $\alpha \rightarrow \mathcal{V})$ is univalent if $\lambda(\alpha: \mathcal{U}) .\left(\alpha, \alpha, \mathrm{id}_{\alpha}\right)$ is an equivalence and for all $\alpha: \mathcal{U}, \lambda X .\left(X, X, \lambda(a: \alpha)\right.$. id $\left._{X(a)}\right):(\alpha \rightarrow \mathcal{V}) \rightarrow$ $\Sigma_{X, Y: \alpha \rightarrow \mathcal{V}} \Pi_{\mathrm{a}: \alpha} X(a) \simeq Y(a)$ is an equivalence. This holds if \mathcal{U} and \mathcal{V} are univalent and the function extensionality holds.

Outline

Introduction

Foundations

Examples

Appendix

Arrow categories

Let \mathbb{C} be a type-theoretic fibration category and write $\left(\mathbb{C}^{\rightarrow}\right)_{f} \subset \mathbb{C}^{\rightarrow}$ for the full subcategory of all the fibrations. Then cod : $(\mathbb{C} \rightarrow)_{f} \rightarrow \mathbb{C}$ is a fibred type-theoretic fibration category. In this case Type \equiv Kind.
If \mathbb{C} has a univalent universe, so does $(\mathbb{C} \rightarrow)_{f}$.
Originally, Shulman proved $(\mathbb{C} \rightarrow)_{f}$ is a type-theoretic fibration category [Shulman, 2015], and I give a fibred categorical description.

Change of base

Let $p: \mathbb{E} \rightarrow \mathbb{B}$ be a fibred type-theoretic fibration category and $F: \mathbb{A} \rightarrow \mathbb{B}$ be a functor preserving fibrations, pullbacks of fibrations and acyclic cofibrations. Then the change of base or pullback

$$
\begin{aligned}
F^{*} \mathbb{E} \longrightarrow & \mathbb{E} \\
\downarrow & \\
\mathbb{A} \xrightarrow[F]{ } & \mathbb{B} \\
& \mathbb{B}
\end{aligned}
$$

is a fibred type-theoretic fibration category.

Relational model

Let $p: \mathbb{E} \rightarrow \mathbb{B}$ be a fibred type-theoretic fibration category. We have the change of base

$\mathcal{R e l}(p)$ is the category of binary families
($\alpha:$ Kind, $R: \alpha \rightarrow \alpha \rightarrow$ Type).

Application

Let $t: \Pi_{A: U} \Pi_{X: A} X=x \rightarrow x=x$.
Theorem

- t is "natural": for any $f: A \rightarrow B$ in \mathcal{U}, $\mathrm{ap}_{f} \circ t \sim t \circ \mathrm{ap}_{f}$.

$$
\begin{aligned}
& x=x \xrightarrow{t} x=x \\
& \left.\begin{array}{l}
\mathrm{ap}_{f} \downarrow \\
f x=f x \xrightarrow[t]{ }=f x= \\
f x
\end{array}\right)
\end{aligned}
$$

- If the type theory has \mathbb{S}^{1}, then for some $n \in \mathbb{Z}$, $t p=p^{n}$ for all $p: x=x$.

Application

Let \mathbb{C} be the syntactic category of Martin-Löf type theory with a univalent universe \mathcal{U}. Then
$(\mathcal{U}, \lambda(A, B: \mathcal{U}) \cdot A \rightarrow B \rightarrow \mathcal{U})$ is a univalent universe in $\mathcal{R e l}(\mathbf{c o d})$. We have a strong fibration functor

$\mathcal{R e l}(\mathbf{c o d})$

In particular, for every closed term $t: A$, we have $R_{A}: A \rightarrow A \rightarrow$ Type and $R_{t}: R_{A}(t, t)$.

Application

Let $t: \Pi_{A: \mathcal{U}} \Pi_{x: A} X=x \rightarrow x=x$. Then R_{t} :
$\Pi_{A, B: \mathcal{U}, W: A \rightarrow B \rightarrow \mathcal{U}} \Pi_{x: A, y: B, v: W(x, y)} \Pi_{p: x=x, q: y=y}(p, q)_{*} v=$ $v \rightarrow(t p, t q)_{*} v=v$.

Application

Given $f: A \rightarrow B$ in \mathcal{U}, let $W(x, y) \equiv f x=y$. Then R_{t} looks like

$$
\begin{aligned}
& f_{x} \xlongequal{\mathrm{ap}_{f} p} f x \quad f_{x} \xlongequal{\mathrm{ap}_{f}(t p)} f x \\
& v\|=\| v \rightarrow v\|=\| v
\end{aligned}
$$

Let $y \equiv f x, q \equiv \operatorname{ap}_{f} p$ and $v \equiv \operatorname{refl}_{f x}$ and apply the function to $\operatorname{refl}_{\mathrm{ap}_{f} p}$. Then $\mathrm{ap}_{f}(t p)=t\left(\mathrm{ap}_{f} p\right)$ for all $x: A$ and $p: x=x$.

Application

Suppose the type theory has $\mathbb{S}^{1}: \mathcal{U}$ with $b: \mathbb{S}^{1}$ and $l: b=b$. Then $\left(\mathbb{S}^{1},=_{\mathbb{S}^{1}}\right)$ is a unit circle in $\mathcal{R e} /(\mathbf{c o d})$ and we still have the functor $R: \mathbb{C} \rightarrow \mathcal{R e l}($ cod $)$. Let $y: B$ and $q: y=y$ which corresponds to $f: \mathbb{S}^{1} \rightarrow B . t(I)=I^{n}$ for some $n \in \mathbb{Z}$ and

$$
\begin{aligned}
t q & =t\left(\operatorname{ap}_{f}(I)\right) \\
& =\operatorname{ap}_{f}(t(I)) \\
& =\operatorname{ap}_{f}\left(I^{n}\right) \\
& =\left(\operatorname{ap}_{f}(I)\right)^{n} \\
& =q^{n}
\end{aligned}
$$

References I

R Hermida, C. (1993).
Fibrations, Logical Predicates and Indeterminates. PhD thesis, University of Edinburgh.

嗇 Shulman, M. (2015).
Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures in Computer Science, 25(05):1203-1277.

