Higher Inductive Types

Niels van der Weide, Henning Basold, Herman Geuvers

June 25, 2016

Our goal

- A syntax of higher inductive types.
- Definitional computation rules for points and paths.
- Semantical justification (restricted to nonrecursive HITs).

Related Work

- Lumsdaine and Shulman discuss semantics.
- Awodey and Sojakova give propositional computation rules.
- ▶ Van Doorn and Kraus describe how to obtain recursive higher inductive types from nonrecursive higher inductive types.
- Altenkirch, Capriotti, Dijkstra and Forsberg give a syntax, but no rules.

Intuition

- ▶ In HITs we additionally allow path constructors.
- ► For example, the circle is defined as

```
Inductive S^1 := | base : S^1 | loop : base = base
```

- ▶ Paths in X correspond with maps $I^1 \to X$.
- ▶ So, adding paths is adding images of maps $I^1 \rightarrow X$.
- ▶ For higher constructors: replace I^1 by I^n .

More concrete

- ▶ Suppose, we have a type *X* with points *x* and *y*.
- ▶ To add p: x = y, we want to do a pushout

$$\begin{array}{ccc}
I^{0} + I^{0} & \xrightarrow{[x,y]} X \\
\downarrow [0,1] & & \downarrow \iota \\
I^{1} & \xrightarrow{R} X'
\end{array}$$

Note: UMP of pushout gives an elimination rule. The maps p and ι give the introduction rules.

Elimination Rule

For the elimination rule we get

Given a path $q: I^1 \to Y$ and $f: X \to Y$ such that $q \circ [0,1] = f \circ [x,y]$, we get $X' \to Y$.

For S^1

We take $X = I^0$, and then $X' = S^1$. Then a map $S^1 \to Y$ corresponds with a point y : Y and a path p : y = y.

For S^1

So, for S^1 we get introduction rules:

$$\vdash$$
 base : S^1 , \vdash loop : base = base .

Furthermore, the elimination rule is

$$\frac{\vdash y : Y(\mathsf{base}) \qquad \vdash p : y =_{\mathsf{loop}}^{Y} y}{\vdash \mathsf{Srec}(y, p) : \prod x : S^{1}.Y(x)}$$

And we have computation rules

$$Srec(y, p)$$
 base $\equiv y$, $apd(Srec(y, p), loop) \equiv p$.

Higher constructors

We can add higher paths in the same way

```
Inductive I^{n+1} :=
\mid \text{top}: I^n \to I^{n+1}
\mid \text{bottom}: I^n \to I^{n+1}
\mid \text{middle}: \prod x: I^n. \text{top } x = \text{bottom } x
```

For *n*-constructors of X we add images of maps $I^n \to X$.

Towards a General Definition

We first need some notation. Let T be a type and let $x_1:A_1,\ldots,x_n:A_n$ be variables. We define $T(x_1,\ldots,x_n)$ to be the collection of terms t for which we can prove the judgment

 $x_1:A_1,\ldots,x_n:A_n\vdash t:T.$

General Definition

```
Inductive T (B_1: Type)...(B_\ell: Type) := | c_1 : H_1(T) \to T
...
| c_k : H_k(T) \to T
| p_1 : \prod x : A_1.\overline{F_1} = \overline{G_1}
...
| p_n : \prod x : A_n.\overline{F_n} = \overline{G_n}
```

where

- \triangleright Every H_i is polynomial
- ▶ A_i is any type depending on $B_1, ... B_\ell$
- ▶ $\overline{F_i}$ and $\overline{G_i}$ are terms in $(I^{d_i} \to T)(x, c_1, \dots, c_k, p_1, \dots, p_{i-1})$ with variables $x : A_i, c_j : H_j(T) \to T$ and $p_j : \overline{F_j} = \overline{G_j}$

Introduction Rules

We get introduction rules for the points

$$\frac{\vdash t: H_i(T)}{\vdash c_i t: T}$$

and the paths

$$\vdash p_i: \prod x: A_i.\overline{F_i} = \overline{G_i}.$$

Elimination Rule (nondependent)

Nondependent goes well.

$$\vdash z_i : H_i(Y) \to Y \text{ for } i = 1, \dots, k$$

$$\vdash q_i : \prod x : A_i.F'_i = G'_i \text{ for } i = 1, \dots, n$$

$$\vdash T\text{-elim}(z_1, \dots, z_k, q_1, \dots, q_n) : T \to Y$$

where

$$F'_i = F_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}]$$

 $G'_i = G_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}].$

Elimination Rule (dependent, work in progress)

Note: p_i gives an equality $p'_i : \overline{F_i} y = \overline{G_i} y$ for $y : I^{d_i}$. The elimination rule is

$$\vdash z_{i}: \prod x: H_{i}(T).\overline{H_{i}}(Y)(x) \to Y(c_{i}x) \text{ for } i=1,\ldots,k$$

$$\vdash q_{i}: \prod x: A_{i}.\prod y: I^{d_{i}}.F'_{i}y = {}^{Y}_{p'_{i}x}G'_{i}y \text{ for } i=1,\ldots,n$$

$$\vdash T\text{-elim}(z_{1},\ldots,z_{k},q_{1},\ldots,q_{n}): \prod x:T.Y(x)$$

where

$$F'_i = F_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}]$$

 $G'_i = G_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}].$

Computation Rules (points)

We write T-elim $(z_1, \ldots, z_k, q_1, \ldots, q_n)$. We get a computation rule for the points

$$T$$
-elim $'(c_i t) \equiv (z_i t) (H_i(T$ -elim $') t)$.

Computation Rules (paths), work in progress

For $f: \prod x: A.Y(x)$ and $p: I^n \to A$, We define $\operatorname{apd}(f, p)$ as $f \circ p: \prod x: I^n.Y(f(px))$. So:

$$\operatorname{\mathsf{apd}}(T\text{-}\mathsf{elim'},p_i\,t):\prod x:I^{d_i+1}.Y(T\text{-}\mathsf{elim'}\,(p_i\,t\,x))$$

Note: $q_i t$ gives a path

$$(q_i t)^* : \prod x : I^{d_i+1}.Y(T\text{-elim'}(p_i t x))$$

Then for all we say $t: A_i$

$$\operatorname{apd}(T\operatorname{-elim}', p_i t) \equiv (q_i t)^*.$$

Examples

▶ Integers modulo *m* where *m* is fixed.

```
Inductive \mathbb{N}/m\mathbb{N} :=  | 0 : \mathbb{N}/m\mathbb{N} | S : \mathbb{N}/m\mathbb{N} \to \mathbb{N}/m\mathbb{N} | mod : S^m 0 = 0
```

▶ Rational numbers. Here \mathbb{Z} is the integers and $\mathbb{Z}_{\neq 0}$ is the nonzero integers.

```
\begin{array}{l} \text{Inductive } \mathbb{Q} := \\ \mid \ \vdots : \mathbb{Z} \times \mathbb{Z}_{\neq 0} \to \mathbb{Q} \\ \mid \ \text{simplify} : \prod x : \mathbb{Z} \prod y : \mathbb{Z}_{\neq 0}. \ \frac{x}{y} = \frac{x \, \text{div } \gcd(x,y)}{y \, \text{div } \gcd(x,y)} \end{array}
```

Introduction Rules for $\mathbb{N}/m\mathbb{N}$

We have three introduction rules:

$$\vdash 0: \mathbb{N}/m\mathbb{N},$$

$$\vdash S: \mathbb{N}/m\mathbb{N} \to \mathbb{N}/m\mathbb{N},$$

$$\vdash \operatorname{mod}: S^m 0 = 0.$$

Elimination Rule for $\mathbb{N}/m\mathbb{N}$

The elimination rule is

$$\frac{\vdash z : Y(0)}{\vdash s : \prod n : \mathbb{N}/m\mathbb{N}.Y(n) \to Y(S n) \qquad \vdash q : z =_{\text{mod}}^{Y} s^{n} z}{\vdash \mathbb{N}/m\mathbb{N}\text{-elim}(z, s, q) : \prod x : \mathbb{N}/m\mathbb{N}.Y(x)}$$

Computation Rules for $\mathbb{N}/m\mathbb{N}$

The computation rules are

$$\mathbb{N}/m\mathbb{N}$$
-elim (z,s,q) $0 \equiv z,$ $\mathbb{N}/m\mathbb{N}$ -elim (z,s,q) $(S n) \equiv s (\mathbb{N}/m\mathbb{N}$ -elim (z,s,q) $n),$ apd $(\mathbb{N}/m\mathbb{N}$ -elim $(z,s,q),$ mod $) \equiv q.$

Another Example

Consider

```
Inductive Cyl :=
| a : Cyl
| b : Cyl
| l : a = a
| r : b = b
| s : Irec(a, a, l) = Irec(b, b, r)
```

Note: we cannot give s with the type l=r. This shows the advantage of working with maps $l^n \to \text{Cyl}$.

How to do the semantics?

- ▶ The paths are added via pushouts.
- ▶ We need interpretations of interval types I^n .
- ▶ Note: we also need to add paths like

$$\mathsf{ap}(S,\mathsf{mod}):S\,0=S\,(S^m\,0)$$

▶ But we need to guarantee that ap(S, refl) = refl.

What about recursive HITs?

For recursive higher inductive types we do not have a justification of a syntax, but a proposal for a possible syntax.

```
Inductive T (B_1: Type)...(B_\ell: Type):= \mid c_1: H_1(T) \to T
... \mid c_k: H_k(T) \to T
\mid p_1: \prod x: A_1(T).\overline{F_1} = \overline{G_1}
... \mid p_n: \prod x: A_n(T).\overline{F_n} = \overline{G_n}
```

- $ightharpoonup H_i$ is polynomial.
- ▶ $\overline{F_i}$ and $\overline{G_i}$ are terms in $(I^{d_i} \to T)(x, c_1, \dots, c_k, p_1, \dots, p_{i-1})$ with variables $x : A_i(T), c_j : H_j(T) \to T$ and $p_j : \overline{F_j} = \overline{G_j}$.
- ▶ $A_i(T)$ is any type depending on $B_1, ..., B_\ell, T$, which is polynomial in T

Introduction Rules

The introduction rules for the points are

$$\frac{\vdash t: H_i(T)}{\vdash c_i t: T}$$

and the introduction rules for the paths are

$$\vdash p_i : \prod x : A_i(T).\overline{F_i} = \overline{G_i}$$

Elimination Rule

The elimination rule is

where

$$F'_i = F_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}]$$

 $G'_i = G_i[x, z_1, \dots, z_k, q_1, \dots, q_{i-1}].$

Computation Rules

We write T-elim' = T-elim $(z_1, \ldots, z_k, q_1, \ldots, q_n)$. The computation rules are for $t : H_i(T)$

$$T$$
-elim' $(c_i t) = z_i (H_i(T$ -elim') $t)$

and for all $t: A_i(T)$

$$\operatorname{apd}(T\operatorname{-elim}', p_i t) = q_i (A_i(T\operatorname{-elim}') t)$$

Examples

Integers.

```
Inductive \mathbb{Z} := 
\mid 0 : \mathbb{Z}
\mid S : \mathbb{Z} \to \mathbb{Z}
\mid P : \mathbb{Z} \to \mathbb{Z}
\mid \text{inv}_1 : \prod x : \mathbb{Z}.S(Px) = x
\mid \text{inv}_2 : \prod x : \mathbb{Z}.P(Sx) = x
```

Something interesting: there are two different paths in P(S(P0)) = P0, so by Hedberg \mathbb{Z} does not have decidable equality!

Finite sets with elements from A as the free join-semilattice on A.

Conclusion

- Syntax for higher inductive types.
- ▶ Elimination rule and definitional computation rules.
- Semantics for nonrecursive HITs.

Further Work

- Extend semantics to recursive higher inductive types.
- Confluence and strong normalization of computation rules.
- Dependent HITs.
- Version in Cubical Type Theory.