Higher Inductive Types

Niels van der Weide, Henning Basold, Herman Geuvers

June 25, 2016

Our goal

» A syntax of higher inductive types.
» Definitional computation rules for points and paths.

» Semantical justification (restricted to nonrecursive HITs).

Related Work

Lumsdaine and Shulman discuss semantics.

v

v

Awodey and Sojakova give propositional computation rules.

Van Doorn and Kraus describe how to obtain recursive higher
inductive types from nonrecursive higher inductive types.

v

Altenkirch, Capriotti, Dijkstra and Forsberg give a syntax, but
no rules.

v

Intuition

v

In HITs we additionally allow path constructors.

v

For example, the circle is defined as

Inductive St :=
| base: St
| loop : base = base

v

Paths in X correspond with maps /* — X.

v

So, adding paths is adding images of maps /1 — X.

v

For higher constructors: replace /* by /",

More concrete

» Suppose, we have a type X with points x and y.

» To add p: x =y, we want to do a pushout
1o 4 g0 by
0,1 L
o
I — X'

> Note: UMP of pushout gives an elimination rule. The maps p
and ¢ give the introduction rules.

Elimination Rule

For the elimination rule we get

/0+/0 [x,y] X

o1) i

Il—p>X’

Given a path g : /1 — Y and f : X — Y such that
gol[0,1] =fo|x,y], we get X' — Y.

For St

We take X = /9, and then X’ = SL.
Then a map S' — Y corresponds with a point y : Y and a path

piy=y.

lid,id] 0

For St

So, for ST we get introduction rules:
 base : S, loop : base = base.
Furthermore, the elimination rule is

Fy : Y(base) Fp:y :Pgop y
- Srec(y,p) : [Ix: St.Y(x)

And we have computation rules

Srec(y, p) base =y, apd(Srec(y, p),loop) = p.

Higher constructors

We can add higher paths in the same way

Inductive /™1 =

| top: [" — |1

| bottom : [7 — [*1

| middle : []x : /".top x = bottom x

For n-constructors of X we add images of maps /" — X.

Towards a General Definition

We first need some notation. Let T be a type and let
x1:A1,..., %, : Ap be variables. We define T(xi,...,xp) to be the
collection of terms t for which we can prove the judgment

x1: AL, ..., xn tApEt: T,

General Definition

Inductive T (By: TYPE)...(B;: TYPE) :=

| C Hl(T) — T

| ck - H(T) = T

| HX A1 Fl G1
| pn:[lx:AmF =G,
where

» Every H; is polynomial
» A; is any type depending on By, ... By

» F; and G; are terms in (/19 — T)(x,cy,.. ck,pl,...,p,-,l)
with variables x : A;, ¢; : Hi(T) = T and p; : F; = G;

Introduction Rules

We get introduction rules for the points
Ft: H,(T)
Fet: T

and the paths
F pi :Hx:A,-.f,-:E,-.

Elimination Rule (nondependent)

Nondependent goes well.

FZ;ZH;(Y)*)Y]COI’I':].,...,/(
Fqi:[[x:AiF/ =G/ fori=1,...,n

F T-elim(zi,...,2k,q1,..-,qn) : T = Y

where
!/
Fi - Fi[X7zl,-~~,Zk,CI17~~7CIi—1]

Gi/ = G,‘[X,Z]_,. - Zk, q1, - - '?qi_l]'

Elimination Rule (dependent, work in progress)

Note: p; gives an equality pi: F;y = G;y for y : I%. The
elimination rule is
oz [x: Hi(T).Hi(Y)(x) = Y(cix) fori=1,...,k
I—q,-:Hx:A,-.Hy:/d".Fi’y:;/{X Glyfori=1,...,n

F T-elim(zi,...,2k,q1,-..,qn) : [[x: T.Y(x)

where
!
F; = Filx,z1,..., 2k, q1,- - ., qi—1]

Gi/ = Gi[szlw -y Zk, q1, - - '7qi—1]-

Computation Rules (points)

We write T-elim’ = T-elim(z1,..., 2k, q1,.--,qn). We get a
computation rule for the points

T-elim’ (¢ t) = (z; t) (Hi(T-elim’) t).

Computation Rules (paths), work in progress

For f : [[x:A.Y(x) and p: /" — A, We define apd(f, p) as
fop:[[x:1"Y(f(px)). So:

apd(T-elim’, p; t) : Hx 19T Y (T-elim’ (p; t X))
Note: g;t gives a path
(git)*: Hx 19 Y (T-elim’ (p; t x))
Then for all we say t : A;

apd(T-elim’, p; t) = (g; t)*.

Examples

> Integers modulo m where m is fixed.

Inductive N/mN :=

| 0:N/mN
| S:N/mN— N/mN
| mod:Sm0=0

» Rational numbers. Here Z is the integers and Z_q is the
nonzero integers.
Inductive Q :=
| +:Zx Zyy — Q

. . d d 2
| simplity : [1x: 21Ty : Zro. § = Foeisted)

Introduction Rules for N/mN

We have three introduction rules:
FO0:N/mN,

FS:N/mN— N/mN,
Fmod:S"0=0.

Elimination Rule for N/mN

The elimination rule is

Fz:Y(0)
Fs:[[n:N/mN.Y(n)— Y(Sn) Fqiz=) 45"z

FN/mN-elim(z,s,q) : [[x: N/mN.Y(x)

Computation Rules for N/mN

The computation rules are
N/mN-elim(z,s,q)0 = z,

N/mN-elim(z, s, q) (S n) = s (N/mN-elim(z, s, q) n),
apd(N/mN-elim(z, s, g), mod) = q.

Another Example

» Consider

Inductive Cyl :=
| a:Cyl

| b:Cyl

| I:a=a

| r:b=5>b

| s:lrec(a,a,l) =lrec(b, b, r)

Note: we cannot give s with the type / = r. This shows the
advantage of working with maps /7 — Cyl.

How to do the semantics?

v

The paths are added via pushouts.

v

We need interpretations of interval types /”.

> Note: we also need to add paths like

ap(S,mod) : S0=5(5"0)

v

But we need to guarantee that ap(S, refl) = refl.

What about recursive HITs?

For recursive higher inductive types we do not have a justification
of a syntax, but a proposal for a possible syntax.

Inductive T (B;: TYPE)...(By: TYPE):=
| c - Hl()—> T

| ek : H(T)—> T

| HX Al()Fl Gl

i' I AN F =G,

» H; is polynomial.

» F; and G; are terms in (/9 — T)(x,cy,. .. s Chs PLs - -+ Pi-1)
with variables x : Ai(T), ¢;: Hi(T) = T and p; : F; = G;.

» A;(T) is any type depending on By, ... By, T, which is
polynomial in T

Introduction Rules

The introduction rules for the points are

-t Hi(T)
Fet: T

and the introduction rules for the paths are

Fopi: Hx cA(T).F=G;

Elimination Rule

The elimination rule is

Fzi:H(Y)—= Y fori=1,... k
Fagi:[[x:Ai(Y).F/ =G fori=1,....n

E T-elim(zi,...,2k,91,-.-,Gn): T = Y

where
!
Fi = Filx,z1,..., 2k, q1,- - ., qi-1]

Gi/ — Gi[X7217’ oy Zkyq1y .- '7qi71]'

Computation Rules

We write T-elim’ = T-elim(z,...,2x,q1,-.-,qn). The
computation rules are for t : H;(T)

T-elim’ (¢; t) = z; (Hi(T-elim’) t)
and for all ¢t : A;(T)

apd(T-elim’, pi t) = q; (Ai(T-elim’) t)

Examples

> Integers.

Inductive Z :=

| 0:Z

| S:Z—-1Z

| P:Z—7Z

| invy : [[x:Z.S(Px)=x
| invp : [[x:Z.P(Sx)=x

Something interesting: there are two different paths in
P(S(P0)) = PO, so by Hedberg Z does not have decidable
equality!

> Finite sets with elements from A as the free join-semilattice
on A.

Conclusion

» Syntax for higher inductive types.
» Elimination rule and definitional computation rules.

» Semantics for nonrecursive HITs.

Further Work

v

Extend semantics to recursive higher inductive types.

v

Confluence and strong normalization of computation rules.
Dependent HITs.
Version in Cubical Type Theory.

v

v

