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Motivations

|. Understand better the connection between
Type, Top, sSet, o0 Gpd

2. challenge / benchmark for a 2-level type theory
(e.g., HTS)

3. Use this model structure to define homotopy
limits and colimits
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Part |. Model Structures in a type theory with
a strict equality
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Typing rules for Martin-Lof type
theory with a strict equality

Usual rule of identity type

F't,t':A Tre:t=pt
[—t: A ILy:A qg:t=pyFP:U; I'—u:P{y:=tqg:=refl}

F—refl;: t =4t '+ J=(A yq.P, t, ', e u):P{y:="t,q:=e}

Specific rules for strictness

'~ f,¢g:TIx: A Bx Tre:Tlx:A fx=p,9x ['ep,ep:t=yt

I'+ funext=(¢) : f =r1x:4.Bx § [ UIP(eq,e2) : 61 ==y €2
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Categories in MLTT
with strict equality

» Definition A category consists of:

= a type A of objects,

= forall a,b: A, atype Hom(a,b) of arrows

= forall a: A, anidentity arrow id, : Hom(a, a)

= forall a,b,c: A,acomposition function _o _: Hom(b,c) — Hom(a,b) — Hom(a, c)
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Categories in MLTT
with strict equality

» Definition A category consists of:

= a type A of objects,

= forall a,b: A, atype Hom(a,b) of arrows

= forall a: A, anidentity arrow id, : Hom(a, a)

= forall a,b,c: A,acomposition function _o _: Hom(b,c) — Hom(a,b) — Hom(a, c)

Plus commutation “on the noze”

= forall f: Hom(a,b), aproofof foid, = f and idyof = f
= forall f: Hom(a,b),g: Hom(b,c),h : Hom(c,d), a proofof ho(go f)=(hog)of.
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Type is a category

Type (and functions) forms a category because
the laws hold definitionally (thanks to B-reduction).
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Left/Right Lifting Properties

® fhas LLP with respectto g
® ¢ has RLP with respect to f
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Weak factorisation system

» Definition A weak factorization system (wfs) on C consists of two classes of arrows L and

R such that:
1. every arrow f of C can be factorized as f =rolwithl/e Landr e R

2. L is exactly the class of arrows of C which have the LLP with respect to R: L ~ LLP(R)
3. Ris exactly the class of arrows of C which have the RLP with respectto L : R~ RLP(L)
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Model Structure

» Definition A model structure on C consists of three classes of arrows F, C and W (the
fibrations, the cofibrations and the weak equivalences) such that:
1. W satisfies the 2-out-of-3 property

2. (AC, F)and (C, AF) are two weak factorization systems,
where AC:=CnWand AF :=Fn W.

® (C :cofibrations ® AC :acyclic cofibrations
® F :fibrations ® AF :acyclic fibrations
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Part [l. Homotopy Type System

.hu’a/- Model Structures on Types in Type Theory



Homotopy Type System

|. HTS has first been introduced by VV.

2. It has been rephrased recently as a
2-level type theory by Altenkirch et al.

[Voel3] Vladimir Voevodsky. A simple type system with two identity types, 2013.

[Alt16] Thorsten Altenkirch, Paolo Capriotti, Nicolai Kraus,
Extending Homotopy Type Theory with Strict Equality, CSL’16.
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Homotopy Type System

To allow UIP and univalence in the same theory,
we need to guarantee:

a=b—->a=bbut a=b-»a=>.
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Homotopy Type System

To allow UIP and univalence in the same theory,
we need to guarantee:

a=b—->a=bbut a=b-»a=>.

= Introduce a notion of fibrant types
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ldentity path for fibrant types

T-A:UYi Trtt:A THt:A T'-A:U; T+ AFib
Fl—tZAt,IZ/{i I'-1;:t=4t FI—AIZ/{f
It t':A Trp:it=at
I,y:A g:t=4y+ P Fib I'—u:P{y:=tqg:=1 I’I—A:Z/lf
'+ J=(A yq.P, t,t', pu): P{ly:=+,q:=p} I~ A:U,
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ldentity path for fibrant types

A:UYi) TrHtE:A THt:A T'-A:U; T+ AFib
Fl—tZAt,IZ/{i I'1::t=pt FI—AIZ/{f
Tt t T-p:t=at
I,y:A, q: t—Ay I'u:Ply:=tqg:=1; T A:Ur
'+ J=(A yq.P, t,t', pu): P{ly:=+,q:=p} I~ A:U,
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Rules for fibrancy

T A:Ut I'-AFib T,x:AR BFib
I+ U; Fib '+ U; Fib I A Fib ['—1TIx:A.B Fib
I — A Fib I, x: A+ B Fib I — A Fib Fr—tt:A
['—Xx:A.BFib ['—t=4t Fib
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Hack in Cog

We found a way to emulate HTS in Coq using type classes.
First we define a type class Fibrant to keep track of fibrant types:

Axiom dummy_fibrant_type: Type.
Class Fibrant (A: Type) := { dummy_fibrant_value : dummy_fibrant_type }.

And we postulate fibrancy rules. For instance:

Axiom fibrant_forall:V (A:Type) (B: A — Type),
Fibrant A — (V x, Fibrant (B x)) — Fibrant (V x, B x).
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Hack in Cog

The identity type is defined as a private inductive type to forbid
the use of its elimination principle when the predicate is not fibrant:

Private Inductive paths {A: Type} (x: A): A — Type := idpath : paths x x.
Definition paths_ind (A: Type) (x:A) (P:V y:A, paths x y — Type)

(FibP:V y p, Fibrant (Py p)) (u:P x idpath) (y: A) (p:pathsxy):Pyp
:=match pwith | idpath = u end.

The fibrancy conditions are checked automatically by type class inference.
The universe of fibrant types is defined using a coercion:

Record FType := { FType_T : Type;
FType_F : Fibrant FType_T}.

Coercion FType_T : FType »— Sortclass.
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Hack in Cog

The identity type is defined as a private inductive type to forbid
the use of its elimination principle when the predicate is not fibrant:

Private Inductive paths {A: Type} (x: A): A — Type := idpath : paths x x.

Defipition paths ind (A:Type)(x:A)(P:Vy:A paths xy — Type)

(FibP:V y p, Fibrant (Py p))Ju:P x idpath) (y: A) (p:pathsxy):Pyp

:=match pwith | idpath = u end.

The fibrancy conditions are checked automatically by type class inference.
The universe of fibrant types is defined using a coercion:

Record FType := { FType_T : Type;
FType_F : Fibrant FType_T}.

Coercion FType_T : FType »— Sortclass.
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Part lll. Model Structure on fibrant types

.hu’a/- Model Structures on Types in Type Theory



(AC,F)-WFS

The definition of fibrations is based on fibrancy.

The factorisation system comes from the well known
factorisation with the homotopy fiber as done in [GamO08].

[GamO8] Nicola Gambino and Richard Garner. The identity type weak factorisation system.

Theor. Comput. Sci., 409(1):94-109, 2008.
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(AC,F)-WFS

» Definition A function f : A — B is said to be a fibration if there exists a fibrant type
family P: A" — U; such that f is a retractof 771 : £,.4Px — A’ .

fibf:=Ay. Zx: A fx=y
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(AC,F)-WFS

A f s B
(AC) Ax.(f(x),x,reﬂ% % (F)

Zy:B flbf_)/
Fibrations: Injective Equivalences (AC):

T 7 = TS, ot

A A—>£:3—r>()—>8
l ~_ T

f id

S~ w7 T i = reflec
id

with P : B’ — U
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(C,AF)-WFS

The definition of cofibrations is more tricky.

Its requires the introduction of an HIT: the cylinder
as done in [Lum] |]

[Lum11] Peter LeFanu Lumsdaine. Model Structures from Higher Inductive Types.
Unpublished notes, 2011.
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Cylinders

I'—t:B I'=t:B
[ Cyl t:U; I't- Cyl,t Fib I't=top, : IIx: A. Cyl,(f x)
I'+-bases : 11y : B. Cylcy ['t-cyl_eqg:1Ix: A top,x = base (f x)
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Cylinders

The elimination rule is given by:

Iy:B, w:Cyley = P Fib
['—top’:TIx: A . P(fx)(topx) T+ base’ :I1y: B. Py (basey)
I'—cyl_eq :T1x: A. (cyl_eqx) # (base’ (fx)) = top’ x
I+ cyl_ind(P, top’, base’, cyl eq’) : Iy : B.ITw : Cyl,y. Py w
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(C,AF)-WFS

A f . B
\\\\\\\\\$ ‘///;;///2?
(C)  Ax.(f(x),top(x)) m  (AF)

Zy:B Cylfy
Cofibrations: Surjective Equivalences (AF):
id id
A /ﬁ B s,A 3B 5.2

\:g/' tap . = reﬂf(x)
id
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(C,AF)-WFS

To get a WFS, we need to have the following strict equalities.

cyl_ind(P, top’, base’, cyl_eq’, f x, top x) =,3, top’ x
cyl_ind(P, top’, base’, cyl_eq’, y, basey) =081 base’ y
ap cyl_ind(P, top’, base’, cyl_eq’, f x) (cyl_eqy x) =cyl eq’ x
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(C,AF)-WFS

To get a WFS, we need to have the following strict equalities.

cyl_ind(P, top’, base’, cyl_eq’, f x, top x) =,3, top’ x
cyl_ind(P, top’, base’, cyl_eq’, y, basey) =,4, base’y
ap cyl_ind(P, top’, base’, cyl_eq’, f x) (cyl_eq; x@:yl_eq’ X

The last equality is usually assume to be up-to homotopy,
we need to investigate more to check that point.
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Model Structure on
Fibrant Types

» Theorem 1. There is a model structure on U} with the weak equivalences, fibrations and
cofibrations as previously defined.
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Part IV. Model Structure on all types
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Model Structure on Types

Mike Shulman and Paolo Capriotti have already noticed
independently that the notion of fibrant replacement is
inconsistent with HTS.
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Model Structure on Types

Fibrant replacement

It is natural to wonder whether we can have a “fibrant replacement” type former which makes non-fibrant
types into fibrant ones. However, surprisingly, this is actually inconsistent, essentially because it cannot be
made to respect substitution.

Suppose we had a type forming rule

I' = AType
I' = RAFib

with introduction rule

I'Fa:A
I' - ra:RA

and elimination rule

I', (x:RA) - TFib I's(@:A)Ft:Tx: = ral
I, (x:RA) + Relim(a. t, x): T '

M. Shulman post in ncatlab.org
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http://ncatlab.org

Model Structure on Types

Here, we generalize a bit this statement.
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ldentity Path induced
by a Model Structure

A oA . Ax A
. 0 _
r%\ i ¢iPACTA =04
I(A)

Idg = Ax, y. Ly paypaw = (X, y)

The lifiting property of the wfs allows to derive the ] eliminator.
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Model Structure on Types

Impossibility Result: No model structure on HTS exists, for which

for all x, P x is fibrant, then 71 : 2,P x — A is a fibration

and

ld is equivalent to =.
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Model Structure on Types

Idea of the Proof:

The proof is similar to the proof of Capriotti and
goes by proving that |d satisfies UIP, so it can not be

equivalent to =.
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A Context-Dependent
Notion of Fibrancy

We would like to suggest a variant of HTS which may
solve the issue.
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A Context-Dependent
Notion of Fibrancy

We would like to suggest a variant of HTS which may
solve the issue.

Disclaimer: We have no model for this new system
for the moment.
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A Context-Dependent
Notion of Fibrancy

The idea is to have a new judgment for fibrancy
I' - (A; A) Fib

which says that in context I the family A : A — U is uniformly fibrant.
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A Context-Dependent
Notion of Fibrancy

The idea is to have a new judgment for fibrancy
I' - (A; A) Fib
which says that in context I the family A : A — U is uniformly fibrant.

But A may not be uniformly fibrant with respect to I'!

.bzu'a,- Model Structures on Types in Type Theory



A Context-Dependent
Notion of Fibrancy

The rule of fibrancy are modified accordingly, for instance

I'A,x: A+ B: U, I'-(A,x:A; B) Fib

' = (A; ITx: A. B) Fib
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A Context-Dependent
Notion of Fibrancy

The fibrant replacement provides only pointwise fibrant families
(i.e., in the empty context):

I'-A:U;

I'—(.; A) Fib
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Hack in Cogqg

A similar—although trickier—hack works to emulate
this new system in Coq.
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Weak Equivalences Revisited

a function f : A — B is weak-equivalence if f : A — B is a type equivalence

Similar to the definition of weak equivalences in the simplicial model

« The weak equivalences W are weak homotopy equivalences, i.e., morphisms whose geometric
realization is a weak homotopy equivalence of topological spaces.

From ncatlab.org
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(AC/F) WEFS revisited

The factorisation of a function f as an AC/F now makes
use of the fibrant replacement.
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Model Structure on Type

Theorem: there is a model structure on Type in this new system.
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Doggy bag of the talk

. In HTS, we can define model structures and show
that there is a model structure on fibrant types.

2. Among mild assumptions, there is no model structure
on all types in HTS.

3. We propose an (unproven) refinement of HTS that
admits a model structure on all type based on the

notion of uniform fibrancy.

4. This model structure can be used to justify/compute
homopical limits and colimits.
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