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Motivations

1. Understand better the connection between  
Type, Top, sSet, ∞Gpd 

2. challenge / benchmark for a 2-level type theory  
(e.g., HTS)  

3. Use this model structure to define homotopy   
limits and colimits 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Part I.  Model Structures in a type theory with 
  a strict equality
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Typing rules for Martin-Löf type 
theory with a strict equality 

Simon Boulier and Nicolas Tabareau 3

G $ ¨
G $ A : U i

$ G, x : A
$ G px : Aq P G

G $ x : A
$ G i † j
G $ U i : U j

G $ A : U i G $ t : A A ”abh B
G $ t : B

G $ A : U i G, x : A $ B : U j

G $ P x : A. B : Umaxpi,jq

G, x : A $ t : B
G $ l x : A. t : P x : A. B

G $ t : P x : A. B G $ t1 : A
G $ t t1 : B

 
x :“ t1(

G $ A : U i G, x : A $ B : U j

G $ S x : A. B : Umaxpi,jq

G $ t : A G $ t1 : B tx :“ tu
G $ pt, t1q : S x : A. B

G $ t : S x : A. B
G $ p1 t : A

G $ t : S x : A. B
G $ p2 t : B tx :“ p1 tu

G $ A : U i G $ t, t1 : A
G $ t ”A t1 : U i

G $ t : A
G $ reflt : t ”A t

G $ t, t1 : A G $ e : t ”A t1

G, y : A, q : t ”A y $ P : U i G $ u : P ty :“ t, q :“ refltu
G $ J”pA, y.q.P, t, t1, e, uq : P

 
y :“ t1, q :“ e

(

G $ f , g : P x : A. B x G $ e : P x : A. f x ”B x g x
G $ funext”peq : f ”P x:A. B x g

G $ e1, e2 : t ”A t1

G $ UIPpe1, e2q : e1 ”t”t1 e2

Figure 1 Typing rules for Martin-Löf type theory with a strict equality

for all f : Hompa, bq, g : Hompb, cq, h : Hompc, dq, a proof of h ˝ pg ˝ f q ” ph ˝ gq ˝ f .
The definition of a category is universe-polymorphic: it depends on a universe U j in which
all types involved live. In the rest of the paper, all definitions will implicitly be universe-
polymorphic.

The main interest of defining categories with a strict equality is that each universe U i is a
category, where the HompA, Bq is given by A Ñ B, identity and composition are those of
functions, and the laws are given by bh-conversion.

2.3 Model Structures
Model categories are used in mathematics to describe higher homotopies on a category
(standard references are [8, 11]). A model category, is a particular case of category with weak
equivalences. Those categories are models of homotopy theory in the following sense: each
category with weak equivalences presents an (8, 1)-category by localization. Compared to
simple weak equivalence categories, model categories are easier to work with (for instance
to compute the localization). Besides, model categories play a great role in comparing the
models of homotopy theory as they permit to compare different definitions of higher cat-
egories via Quillen equivalences. The prototypical examples of model categories are Top

(the category of topological spaces) and sSet. Here, we present directly the type theoretic
version of model categories. The commutations of diagram are relative to the strict equal-
ity ”. In the case of the category U i, functional extensionality makes the commutation of
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2 Model Structures on Types in Type Theory

To answer this question, we first formalize in Section 2 the notion of model structure in a
Martin-Löf type theory with a strict equality, following the recent line of work on formal-
ization of higher category theory using a strict equality to avoid coherence issues [3].
This allows us to formalize in Section 3 a model structure on the category of fibrant types
in HTS, following the work of [13, 6]. In this model structure, weak equivalences are given
by type equivalences as defined in the HoTT book [17], fibrations are captured by fibrant
predicates, and cofibrations are captured by a specific Higher Inductive Type (HIT) called
a cylinder [13]. To understand the interplay between the model structure of fibrant types
and the one of sSet, we give an interpretation of HTS in sSet (Section 3.2). We formalize
our result in Coq by using type classes to encode fibrancy (Section 3.3).
Quite surprisingly, we prove in Section 4 that, under a mild assumption on the definition of
fibrations, the existence of a model structure on the category of all types is inconsistent with
univalence, and is thus out of reach for HTS. The problem is that the notion of fibrations
is not entirely compatible with dependency in the context in the sense that “for all x :
A, Px is fibrant” must not be equivalent to “Sx:APx is fibrant”. This analysis suggests a
new version of HTS where the notion of fibrancy is context-sensitive. We provide such an
extension in Section 4.2. All the results have been formlized in Coq and are available at
https://github.com/SimonBoulier/ModelStructure-HTS.

2 Model Structures in MLTT

In this section, we provide the definitions of category and model structure in Martin-Löf
type theory with a strict equality.

2.1 MLTT with a Strict Equality
The first system we consider is Martin-Löf type theory with a strict equality ” (i.e., sat-
isfying functional extensionality and Uniqueness of Identity Proofs (UIP)). We present it
with a syntax à la Calculus of Constructions (terms and types belong to the same syntactic
class) and with a cumulative hierarchy of universes indexed by natural numbers. As this
type theory is now elementary, we don’t detail it and only give the typing rules to fix the
notations (Fig. 1). A standard model of such system is the setoid model [2, 9]. We write
”abh for the conversion, which encompasses: a-equivalence, b- and h-equivalences for P
types and S types , b-equivalence for equality types (J”pA, y.e.P, t, t, 1, uq ”abh u).
Throughout this paper, we will write MLTT for “Martin-Löf type theory with a strict equal-
ity” (and with a unit type in the last part).

2.2 Categories
Defining the right notion of category in HoTT with a relevant equality is quite intricate as
several choices can be made to tame higher coherences [1]. There is no such shilly-shallying
in a type theory where the equality is irrelevant:

§ Definition 1. A category consists of:
a type A of objects,
for all a, b : A , a type Hompa, bq of arrows
for all a : A , an identity arrow ida : Hompa, aq
for all a, b, c : A , a composition function _ ˝ _ : Hompb, cq Ñ Hompa, bq Ñ Hompa, cq
for all f : Hompa, bq, a proof of f ˝ ida ” f and idb ˝ f ” f
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Model categories are used in mathematics to describe higher homotopies on a category
(standard references are [8, 11]). A model category, is a particular case of category with weak
equivalences. Those categories are models of homotopy theory in the following sense: each
category with weak equivalences presents an (8, 1)-category by localization. Compared to
simple weak equivalence categories, model categories are easier to work with (for instance
to compute the localization). Besides, model categories play a great role in comparing the
models of homotopy theory as they permit to compare different definitions of higher cat-
egories via Quillen equivalences. The prototypical examples of model categories are Top

(the category of topological spaces) and sSet. Here, we present directly the type theoretic
version of model categories. The commutations of diagram are relative to the strict equal-
ity ”. In the case of the category U i, functional extensionality makes the commutation of

Plus commutation “on the noze”
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Type is a category 

Type (and functions) forms a category because 
the laws hold definitionally (thanks to β-reduction).
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Left/Right Lifting Properties
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diagrams and the pointwise commutation equivalent.
Let C be a category (in the sense of definition 1).

§ Definition 2. Let f : HompX, Yq and g : HompX1, Y1q be arrows of C. We say that f is a
retract of g if there exist arrows s, r, s1 and r1 such that the following diagram commutes:

X X1 X

Y Y1 Y

s

f

id

r

g f

s1

id

r1

By a class of arrows of C, we simply mean a predicate P : PX,Y:A HompX, Yq Ñ U i. We
write f P P for all function such that P f . If Q is another class, we write P „ Q if we have
PX,YP f :HompX,Yq P f Ø Q f , and P X Q for the conjunction of the two classes.

§ Definition 3. A class P of arrows of C satisfies the 2-out-of-3 property if, for all arrows

X Y Z
f g

such that two of f , g and g ˝ f belong to P, so does the third.
Precisely, it means that we have three functions:

P f ,g P f Ñ P g Ñ P pg ˝ f q
P f ,g P pg ˝ f q Ñ P f Ñ P g
P f ,g P g Ñ P pg ˝ f q Ñ P f

§ Definition 4. Let f : HompX, Yq and g : HompX1, Y1q be arrows of C. It is said that
f has the left lifting property (LLP) with respect to g (and that g has the right lifting prop-
erty (RLP) with respect to f ) if, for all arrows F : HompX, X1q and G : HompY, Y1q such
that the square below commutes, there exists an arrow g : HompY, X1q filling the diagonal:

X X1

Y Y1

F

f g

G

g

We then say that an arrow f has the LLP (resp. the RLP) with respect to a class of arrows P
if it has it with respect to all arrows of P. We write LLPpPq (resp. RLPpPq ) the class of such
arrows.

§ Definition 5. A weak factorization system (wfs) on C consists of two classes of arrows L and
R such that:
1. every arrow f of C can be factorized as f ” r ˝ l with l P L and r P R
2. L is exactly the class of arrows of C which have the LLP with respect to R : L „ LLPpRq
3. R is exactly the class of arrows of C which have the RLP with respect to L : R „ RLPpLq

The classes L and R of a weak factorization system enjoy several good properties: they
contain all isomorphisms, they are closed under retract, L is closed under pushouts, R is
closed under pullbacks, . . .
We can now state what is a model structure.

§ Definition 6. A model structure on C consists of three classes of arrows F, C and W (the
fibrations, the cofibrations and the weak equivalences) such that:
1. W satisfies the 2-out-of-3 property
2. (AC, F) and (C, AF) are two weak factorization systems,

where AC :“ C X W and AF :“ F X W.

• f has LLP with respect to g

• g has RLP with respect to f
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Weak factorisation system
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• C : cofibrations
• F : fibrations

• AC : acyclic cofibrations
• AF : acyclic fibrations
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Homotopy Type System

1. HTS has first been introduced by VV.  

2. It has been rephrased recently as a  
2-level type theory by Altenkirch et al.

[Voe13] Vladimir Voevodsky. A simple type system with two identity types, 2013. 

[Alt16] Thorsten Altenkirch, Paolo Capriotti, Nicolai Kraus,  
             Extending Homotopy Type Theory with Strict Equality, CSL’16. 



Model Structures on Types in Type Theory 12

Homotopy Type System

To allow UIP and univalence in the same theory, 
we need to guarantee:

Simon Boulier and Nicolas Tabareau 5

The arrows of AC (resp. AF) are called the acyclic cofibrations (resp. acyclic fibrations).

If C has a terminal object 1, we say that an object X is fibrant if the map X Ñ 1 is a fibration.

§ Definition 7. A model category is a category equipped with a model structure which is
complete (it has all small limits) and cocomplete (it has all small colimits).

A fundamental idea of homotopy type theory is to interpret Martin-Löf identity types with
a weak factorization system [5] (in particular, the (AC,F) one of the classical model structure
of sSet) in order to enrich it with homotopical concepts. We will detail it a bit in Section 3.2.

3 Model Structure on Fibrant Types

One of the goals of our work is to equip the category U i with a model structure in an
extension of MLTT reflecting enough homotopy structure of the simplicial model. We start
our investigations with Voevodsky’s Homotopy Type System (HTS) which allows us to
define a model structure on the category of fibrant types.

3.1 HTS
Homotopy Type System [19] consists in enriching MLTT with a univalent equality (writ-
ten “). As univalence and UIP are contradictory ([17] ex. 3.1.19), HTS requires a mech-
anism to avoid the strict equality and univalent equality to collapse. This is achieved by
introducing the notion of fibrant types (the terminology comes from their interpretation in
the simplicial model, see Section 3.2).
There is a new judgment G $ A Fib which expresses that a type is fibrant. Most of usual
types are fibrant, except for the strict equality. The rules to derive fibrancy are given in
Figure 3. Then, the elimination of univalent equality is restricted to fibrant types (Fig. 2).
As a result we have a ” b Ñ a “ b but a “ b Û a ” b. A new hierarchy U F

i of universes
of fibrant types is also introduced.

G $ A : UF i G $ t, t1 : A
G $ t “A t1 : U i

G $ t : A
G $ 1t : t “A t

G $ A : U i G $ A Fib

G $ A : U F
i

G $ t, t1 : A G $ p : t “A t1

G, y : A, q : t “A y $ P Fib G $ u : P ty :“ t, q :“ 1tu
G $ J“pA, y.q.P, t, t1, p, uq : P

 
y :“ t1, q :“ p

(
G $ A : U F

i

G $ A : U i

Figure 2 Typing rules of the fibrant equality and the fibrant universes

The are two slight variations in our presentation of HTS with respect to Voevodsky’s one.
First we don’t consider the reflection rule which says that x ” y implies x ”abh y to retain
a decidable type checking. And second, as the model allows (Section 3.2), we don’t require
a type to be fibrant to form its identity type1. However, we require it to have the identity
type fibrant.

§ Remark. With our variation, identity types for non fibrant types do not verify groupoid
laws (for instance x “ y Û y “ x).

1 From now, by identity type, we will mean univalent equality type (as opposed to strict equality type).
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The are two slight variations in our presentation of HTS with respect to Voevodsky’s one.
First we don’t consider the reflection rule which says that x ” y implies x ”abh y to retain
a decidable type checking. And second, as the model allows (Section 3.2), we don’t require
a type to be fibrant to form its identity type1. However, we require it to have the identity
type fibrant.

§ Remark. With our variation, identity types for non fibrant types do not verify groupoid
laws (for instance x “ y Û y “ x).

1 From now, by identity type, we will mean univalent equality type (as opposed to strict equality type).

⇒ Introduce a notion of fibrant types
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The are two slight variations in our presentation of HTS with respect to Voevodsky’s one.
First we don’t consider the reflection rule which says that x ” y implies x ”abh y to retain
a decidable type checking. And second, as the model allows (Section 3.2), we don’t require
a type to be fibrant to form its identity type1. However, we require it to have the identity
type fibrant.

§ Remark. With our variation, identity types for non fibrant types do not verify groupoid
laws (for instance x “ y Û y “ x).

1 From now, by identity type, we will mean univalent equality type (as opposed to strict equality type).

Identity path for fibrant types 
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G $ U i Fib G $ U F
i Fib

G $ A : U F
i

G $ A Fib

G $ A Fib G, x : A $ B Fib

G $ P x : A. B Fib

G $ A Fib G, x : A $ B Fib

G $ S x : A. B Fib

G $ A Fib G $ t, t1 : A
G $ t “A t1

Fib

Figure 3 Rules for fibrancy

§ Remark. We don’t add the univalence axiom (for the univalent equality) because we don’t
need it for our formalization. But we definitely want to be able to assume it, that’s why in
the next section we will look for a univalent model.

3.2 Model of HTS
We now present the simplicial model of HTS. Such a model justifies the fibrancy rules (in
fact, it was used as a guide for the design of the type system). But we are also interested
in the interplay between the model structure on U i and the model structure of sSet. The
simplicial model has been described as a model of HoTT [12, 18] but to our knowledge, the
quite direct extension to HTS has never been spelled out explicitly. We mainly follow [12].
We recommend the reader unaccustomed with presheaf models to refer to [10].
To describe the simplicial model of HTS we use the handy setting of type categories [14].

§ Definition 8. A type category is given by:
a category2 C of contexts
for each G P C, a collection TypGq of types in the context G
for each A P TypGq, an extended context G.A together with a morphism p1 : G.A Ñ G
for each f : G1 Ñ G, a function _t f u : TypGq Ñ TypG1q

for each f : G1 Ñ G and A P TypAq, a pullback diagram:
G.At f u G.A

G1 G

p1 A

f `

p1

f

such that A tidGu “ A, A tg ˝ f u “ A tgu t f u, pidGq` “ idG.A and pg ˝ f q` “ g` ˝ f `.

In a type category, terms t such that G $ t : A are interpreted as sections of p1 : G.A Ñ G.
We can define what it means for a type category to support P types, S types, strict equality
and universes (see [10]). A type category supporting those constructors is a model of MLTT
as presented in Section 2.
Let sSet be the category of simplicial sets, that is the functor category Set

Dop
where D is the

simplex category. As simplicial sets are particular cases of presheaves, sSet can be seen
as a type category. In this interpretation, TypGq is the collection of families of simplicial sets
over G P sSet. Such a family A is given by a family of sets Anpgq for n P D and g P Gn
together with a family of functions Awpgq : Anpgq Ñ Ampg.wq for w : m Ñ n P G and
g P Gn satisfying identity and composition relations. The context extension is simply given
by a level-wise product: pG.Aqnpgq “ tpg, xq | g P Gn and x P Anpgqu.

2 depending on the metatheory used, the notion of category could be set-theoretic or type-theoretic as in
definition 1, here we rather use the set-theoretic one
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IpAq pG.AqD1

G GD1

A
pD1

1

cst

where D1 is the 1-simplex 0 ›Ñ 1. This construction still provides a factorization of the
diagonal but it provides an (AC,F)-factorization only if p1 : G.A Ñ G is one ([12] prop.
2.3.3). This explains the fibrancy rule for identity types and our choice to always allow the
formation of the identity type.

On Fibrant Replacement.

Mickael Shulman has noticed that assuming a fibrant replacement (that is, a modality [17,
16] A such that for all types A, A is fibrant) is inconsistent in HTS.3

Let’s briefly see why the pullback construction doesn’t work for the fibrant replacement.
There is a fibrant replacement functor on simplicial sets Ex8 : sSet Ñ sSet (see [7]). For a
family A P TypGq, let’s thus define A P TypGq by:

G.A Ex8pG.Aq

G Ex8pGq

p1
A

Ex8pp1q
h

The problem is that p1 : G.A Ñ G is not a fibration in general. The only case where it
is provable is when p1 : G.A Ñ G is a fibration (because Ex8 preserves fibrations and
fibrations are stable under pullback). That is: A fibrant when A fibrant . . . not very useful!

3.3 Implementation in Coq
We found a way to emulate HTS in the Coq proof assistant using type classes. First we
define a type class Fibrant to keep track of fibrant types:

Axiom dummy_fibrant_type : Type.
Class Fibrant (A: Type) := { dummy_fibrant_value : dummy_fibrant_type }.

And we postulate fibrancy rules. For instance:

Axiom fibrant_forall: @ (A:Type) (B: A Ñ Type),
Fibrant A Ñ (@ x, Fibrant (B x)) Ñ Fibrant (@ x, B x).

Note that we need to add a corresponding axiom each time we declare a new inductive
type. Then we define the identity types as a private inductive type to forbid the use of its
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diagonal but it provides an (AC,F)-factorization only if p1 : G.A Ñ G is one ([12] prop.
2.3.3). This explains the fibrancy rule for identity types and our choice to always allow the
formation of the identity type.

On Fibrant Replacement.

Mickael Shulman has noticed that assuming a fibrant replacement (that is, a modality [17,
16] A such that for all types A, A is fibrant) is inconsistent in HTS.3

Let’s briefly see why the pullback construction doesn’t work for the fibrant replacement.
There is a fibrant replacement functor on simplicial sets Ex8 : sSet Ñ sSet (see [7]). For a
family A P TypGq, let’s thus define A P TypGq by:

G.A Ex8pG.Aq

G Ex8pGq

p1
A

Ex8pp1q
h

The problem is that p1 : G.A Ñ G is not a fibration in general. The only case where it
is provable is when p1 : G.A Ñ G is a fibration (because Ex8 preserves fibrations and
fibrations are stable under pullback). That is: A fibrant when A fibrant . . . not very useful!

3.3 Implementation in Coq
We found a way to emulate HTS in the Coq proof assistant using type classes. First we
define a type class Fibrant to keep track of fibrant types:

Axiom dummy_fibrant_type : Type.
Class Fibrant (A: Type) := { dummy_fibrant_value : dummy_fibrant_type }.

And we postulate fibrancy rules. For instance:

Axiom fibrant_forall: @ (A:Type) (B: A Ñ Type),
Fibrant A Ñ (@ x, Fibrant (B x)) Ñ Fibrant (@ x, B x).

Note that we need to add a corresponding axiom each time we declare a new inductive
type. Then we define the identity types as a private inductive type to forbid the use of its
elimination principle when the predicate is not fibrant:
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Definition paths_ind (A : Type) (x : A) (P : @ y : A, paths x y Ñ Type)
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The fibrancy conditions are checked automatically by type class inference. The universe of
fibrant types is defined using a coercion:

Record FType := { FType_T : Type;
FType_F : Fibrant FType_T}.

Coercion FType_T : FType ⇢ Sortclass.

The only drawback with this presentation (apart from using axiom to encode fibrancy) is
that the use of a private inductive type prevents to use Coq tactics (such as destruct and
rewrite) to reason on equality. We circumvented this issue by defining a Coq plugin to
provide similar tactics in our setting.

3.4 Homotopy Fibers and Cylinders
To describe our model structure on U F

i , we will need the dual notions of homotopy fibers
and (mapping) cylinders. Homotopy fibers are definable using S types [17] . Let f : A Ñ B
be a function. The homotopy fibers of f are defined by the type family fib f : B Ñ U i with

fib f :“ l y. S x : A. f x “ y

Cylinders are defined as an Higher Inductive Type (HIT) [13, 15]. But as HITs are not nat-
ively present in our presentation of HTS, we have to add specific rules for them. The
formation and introduction rules for cylinders are given by (all the following rules have
G $ A, B : U i and G $ f : A Ñ B as additional premises):

G $ t : B
G $ Cyl f t : U i

G $ t : B
G $ Cyl f t Fib G $ top f : P x : A. Cyl f p f xq

G $ base f : P y : B. Cyl f y G $ cyl_eq f : P x : A. top f x “ base f p f xq

This expresses that there are two ways to inhabit a cylinder, with top and base, and that
those two ways coincide on f x. The elimination rule is given by:

G, y : B, w : Cyl f y $ P Fib

G $ top1 : P x : A. P p f xq ptop xq G $ base1 : P y : B. P y pbase yq
G $ cyl_eq1 : P x : A. pcyl_eq xq # pbase1 p f xqq “ top1 x

G $ cyl_indpP, top1, base1, cyl_eq1q : P y : B. P w : Cyl f y. P y w

where # denotes transport along the identity type and ap is the action of a function on the
identity type (as in [17]). The computation rules are given by:

cyl_indpP, top1, base1, cyl_eq1, f x, top xq ”abh top1 x

cyl_indpP, top1, base1, cyl_eq1, y, base yq ”abh base1 y

ap cyl_indpP, top1, base1, cyl_eq1, f xq pcyl_eq f xq ” cyl_eq1 x

We suppose that cylinders are always fibrant, but restrict the elimination of cylinders to
fibrant predicates. It will be future work to justify such choices in the simplicial model.
There is also an uncertainty about what exactly is the equality for the computation rule of
cyl_eq (see the notes of chapter 6 of [17]).

The fibrancy conditions are checked automatically by type class inference. 
The universe of fibrant types is defined using a coercion: 
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(AC,F)-WFS

[Gam08] Nicola Gambino and Richard Garner. The identity type weak factorisation system. 

Theor. Comput. Sci., 409(1):94–109, 2008. 

The definition of fibrations is based on fibrancy.

The factorisation system comes from the well known 
factorisation with the homotopy fiber as done in [Gam08]. 
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3.5 Model Structure on U F
i

We now describe a model structure on the universe of fibrant types U F
i . In [6], Gambino

and Garner define the (AC,F)-wfs, and in [13], Lumsdaine define the (C,AF)-wfs (see also
Section 3.2 of [4]). One can see this section as a synthesis of their works in the HTS setting.
Our work emphasizes the fact that those factorization systems are only defined for fibrant
types. Throughout this section, A and B will denote fibrant types. This section has been
entirely formalized in the directory HTS of the formalization.

Weak Equivalences.

Weak equivalences are defined as type equivalences in the sense of [17, Chapter 4]:

§ Definition 10. A function F : A Ñ B is a type equivalence if there exists g : B Ñ A and
h : Px:A g p f xq “ x
e : Py:B f pg yq “ y
a : Px:A ap f ph xq “ e p f xq.

(AC,F)-WFS.

The (AC,F)-wfs system is given by homotopy fibers. Every function f factorizes as:

A B

Sy:B fib f y

f

lx. p f x, x, 1 f xq
„

p1

§ Remark. As we now have two equalities, we have to be careful about what we mean
by “being equal” or “commuting”. In the following, all commutations of diagrams are
required to be with respect to the strict equality.

§ Definition 11. A function f : A Ñ B is said to be a fibration if there exists a fibrant type
family P : A1 Ñ U i such that f is a retract of p1 : Sx:A1 P x Ñ A1 .
We write F the class of fibrations. The acyclic cofibrations are defined by LLPpFq.

§ Lemma 1. pF, LLPpFqq is a weak factorization system on U F
i .

Proof. We have to check that:
for all f , f 1 :“ l x. p f x, x, 1 f xq P LLPpFq
RLPpLLPpFqq Ñ F

We only sketch the proof of the first point. All other proofs of this section are similar and
can be found in the formalization. As the lifting property is stable under retracts, to show
that f 1 P LLPpFq we only have to show that every lifting problem

A Sx:A1 P x

Sy:B fib f y B1

F

f 1 p1

G

g

has a diagonal filler g.

We define g as the composition Sy:B fib f y Sy:BP pG yq Sy:B1 P ya b
where:

a :“ l py, x, pq. ppy, x, pq, p2 pF xqq and b :“ l pw, zq. pG w, zq
(modulo the transports along strict equalities). û
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(C,AF)-WFS

The definition of cofibrations is more tricky. 

Its requires the introduction of an HIT: the cylinder 
as done in [Lum11]

[Lum11] Peter LeFanu Lumsdaine. Model Structures from Higher Inductive Types. 

Unpublished notes,  2011. 
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The fibrancy conditions are checked automatically by type class inference. The universe of
fibrant types is defined using a coercion:

Record FType := { FType_T : Type;
FType_F : Fibrant FType_T}.

Coercion FType_T : FType ⇢ Sortclass.

The only drawback with this presentation (apart from using axiom to encode fibrancy) is
that the use of a private inductive type prevents to use Coq tactics (such as destruct and
rewrite) to reason on equality. We circumvented this issue by defining a Coq plugin to
provide similar tactics in our setting.

3.4 Homotopy Fibers and Cylinders
To describe our model structure on U F

i , we will need the dual notions of homotopy fibers
and (mapping) cylinders. Homotopy fibers are definable using S types [17] . Let f : A Ñ B
be a function. The homotopy fibers of f are defined by the type family fib f : B Ñ U i with

fib f :“ l y. S x : A. f x “ y

Cylinders are defined as an Higher Inductive Type (HIT) [13, 15]. But as HITs are not nat-
ively present in our presentation of HTS, we have to add specific rules for them. The
formation and introduction rules for cylinders are given by (all the following rules have
G $ A, B : U i and G $ f : A Ñ B as additional premises):

G $ t : B
G $ Cyl f t : U i

G $ t : B
G $ Cyl f t Fib G $ top f : P x : A. Cyl f p f xq

G $ base f : P y : B. Cyl f y G $ cyl_eq f : P x : A. top f x “ base f p f xq

This expresses that there are two ways to inhabit a cylinder, with top and base, and that
those two ways coincide on f x. The elimination rule is given by:

G, y : B, w : Cyl f y $ P Fib

G $ top1 : P x : A. P p f xq ptop xq G $ base1 : P y : B. P y pbase yq
G $ cyl_eq1 : P x : A. pcyl_eq xq # pbase1 p f xqq “ top1 x

G $ cyl_indpP, top1, base1, cyl_eq1q : P y : B. P w : Cyl f y. P y w

where # denotes transport along the identity type and ap is the action of a function on the
identity type (as in [17]). The computation rules are given by:

cyl_indpP, top1, base1, cyl_eq1, f x, top xq ”abh top1 x

cyl_indpP, top1, base1, cyl_eq1, y, base yq ”abh base1 y

ap cyl_indpP, top1, base1, cyl_eq1, f xq pcyl_eq f xq ” cyl_eq1 x

We suppose that cylinders are always fibrant, but restrict the elimination of cylinders to
fibrant predicates. It will be future work to justify such choices in the simplicial model.
There is also an uncertainty about what exactly is the equality for the computation rule of
cyl_eq (see the notes of chapter 6 of [17]).
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formation and introduction rules for cylinders are given by (all the following rules have
G $ A, B : U i and G $ f : A Ñ B as additional premises):

G $ t : B
G $ Cyl f t : U i

G $ t : B
G $ Cyl f t Fib G $ top f : P x : A. Cyl f p f xq

G $ base f : P y : B. Cyl f y G $ cyl_eq f : P x : A. top f x “ base f p f xq

This expresses that there are two ways to inhabit a cylinder, with top and base, and that
those two ways coincide on f x. The elimination rule is given by:

G, y : B, w : Cyl f y $ P Fib

G $ top1 : P x : A. P p f xq ptop xq G $ base1 : P y : B. P y pbase yq
G $ cyl_eq1 : P x : A. pcyl_eq xq # pbase1 p f xqq “ top1 x

G $ cyl_indpP, top1, base1, cyl_eq1q : P y : B. P w : Cyl f y. P y w

where # denotes transport along the identity type and ap is the action of a function on the
identity type (as in [17]). The computation rules are given by:

cyl_indpP, top1, base1, cyl_eq1, f x, top xq ”abh top1 x

cyl_indpP, top1, base1, cyl_eq1, y, base yq ”abh base1 y

ap cyl_indpP, top1, base1, cyl_eq1, f xq pcyl_eq f xq ” cyl_eq1 x

We suppose that cylinders are always fibrant, but restrict the elimination of cylinders to
fibrant predicates. It will be future work to justify such choices in the simplicial model.
There is also an uncertainty about what exactly is the equality for the computation rule of
cyl_eq (see the notes of chapter 6 of [17]).

The elimination rule is given by: 
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The fibrancy conditions are checked automatically by type class inference. The universe of
fibrant types is defined using a coercion:

Record FType := { FType_T : Type;
FType_F : Fibrant FType_T}.

Coercion FType_T : FType ⇢ Sortclass.

The only drawback with this presentation (apart from using axiom to encode fibrancy) is
that the use of a private inductive type prevents to use Coq tactics (such as destruct and
rewrite) to reason on equality. We circumvented this issue by defining a Coq plugin to
provide similar tactics in our setting.

3.4 Homotopy Fibers and Cylinders
To describe our model structure on U F

i , we will need the dual notions of homotopy fibers
and (mapping) cylinders. Homotopy fibers are definable using S types [17] . Let f : A Ñ B
be a function. The homotopy fibers of f are defined by the type family fib f : B Ñ U i with

fib f :“ l y. S x : A. f x “ y

Cylinders are defined as an Higher Inductive Type (HIT) [13, 15]. But as HITs are not nat-
ively present in our presentation of HTS, we have to add specific rules for them. The
formation and introduction rules for cylinders are given by (all the following rules have
G $ A, B : U i and G $ f : A Ñ B as additional premises):
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G $ Cyl f t : U i
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G $ Cyl f t Fib G $ top f : P x : A. Cyl f p f xq

G $ base f : P y : B. Cyl f y G $ cyl_eq f : P x : A. top f x “ base f p f xq

This expresses that there are two ways to inhabit a cylinder, with top and base, and that
those two ways coincide on f x. The elimination rule is given by:

G, y : B, w : Cyl f y $ P Fib

G $ top1 : P x : A. P p f xq ptop xq G $ base1 : P y : B. P y pbase yq
G $ cyl_eq1 : P x : A. pcyl_eq xq # pbase1 p f xqq “ top1 x

G $ cyl_indpP, top1, base1, cyl_eq1q : P y : B. P w : Cyl f y. P y w

where # denotes transport along the identity type and ap is the action of a function on the
identity type (as in [17]). The computation rules are given by:

cyl_indpP, top1, base1, cyl_eq1, f x, top xq ”abh top1 x

cyl_indpP, top1, base1, cyl_eq1, y, base yq ”abh base1 y

ap cyl_indpP, top1, base1, cyl_eq1, f xq pcyl_eq f xq ” cyl_eq1 x

We suppose that cylinders are always fibrant, but restrict the elimination of cylinders to
fibrant predicates. It will be future work to justify such choices in the simplicial model.
There is also an uncertainty about what exactly is the equality for the computation rule of
cyl_eq (see the notes of chapter 6 of [17]).

To get a WFS, we need to have the following strict equalities.
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The last equality is usually assume to be up-to homotopy, 
we need to investigate more to check that point.
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§ Remark. Fibrations of the model structure on U F
i are directly interpreted as fibrations in

the simplicial model: the function p1 : Sx:AP x Ñ A is interpreted as G.pS A Pq – G.A.P Ñ
G.A which is a fibration if and only if G, x : A $ P x Fib (see also [6, Theorem 15] for
a similar result). We see here that the fibrancy condition Fib is used to lift homotopical
information from the model to the type theory. We will prove in Section 4.1 that the fibrancy
condition is to coarse to capture exactly fibrations of the model. The type theory proposed
in Section 4.2 is an attempt to solve this issue.

(C,AF)-WFS

The (C,AF)-wfs is given by cylinders. Every function f factorizes as:

A B

Sy:B Cyl f y

f

lx. p f x, toppxqq p1
„

To define cofibrations, we first characterize acyclic fibrations:

§ Lemma 2. A function f : A Ñ B is an acyclic fibration (i.e., both a fibration and a weak
equivalence) iff there exists a fibrant type family P : A1 Ñ U i such that for all x, P x is
contractible (i.e., weakly equivalent to unit 1) and f is a retract of p1 : Sx:A1 P x Ñ A1 .
We write AF the class of acyclic fibrations. The cofibrations are defined by LLPpAFq.

§ Lemma 3. pAF, LLPpAFqq is a weak factorization system on U F
i .

§ Theorem 1. There is a model structure on U F
i with the weak equivalences, fibrations and

cofibrations as previously defined.

Proof. The only thing that remains to be checked is LLPpFq “ LLPpAFq X W. û

Characterizations of Fibrations and Cofibrations

During our formalization, we have shown some nice characterizations of fibrations and
cofibrations. First a fibration is necessarily a retract of the p1 of its homotopy fiber.

§ Proposition. A function f : A Ñ B is a fibration if and only if there exists j making the
following diagram commute (the left triangle always commutes):

A Sy fib f y A

B

f 1

id

f

j

p1 f

where f 1 is l x. p f x, x, 1 f xq.

§ Remark. There is always a candidate for j: the function p2. p2 makes the upper triangle
strictly commute but not the right one. Hence, j is a kind of “better” p2.

Then, cofibrations can be better described than LLP of fibrations. A cofibration is necessar-
ily the retract of its injection into its cylinder.

§ Proposition. A function f : A Ñ B is a cofibration if and only if there exists j making the
following diagram commute (the right triangle always commutes):
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Part IV.  Model Structure on all types
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Mike Shulman and Paolo Capriotti have already noticed 
independently that the notion of fibrant replacement is 
inconsistent with HTS. 

Model Structure on Types
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Model Structure on Types

M. Shulman post in ncatlab.org

http://ncatlab.org
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Model Structure on Types

Here, we generalize a bit this statement.  
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Identity Path induced
by a Model Structure
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A

B Sy Cyl f y B

f fp f , topq

j

id

p1

Finally, acyclic cofibrations also have a nice description: they are the injective equivalences
(as already noticed in [6]).

4 Toward a Model Structure on Types

In the previous section, we have given a model structure on U F
i . We would like to extend it

to the universe U i. Unfortunately, it can’t be done, at least not as a direct extension. Indeed,
we prove in Section 4.1 than we can’t keep the same definition of fibrations to extend our
model structure to U i. Then we suggest a new type system in Section 4.2, with a context
dependent management of fibrancy which allows to add a fibrant replacement and finally
to extend the model structure of the previous section to all types.

4.1 Impossibility Results
In this section, we work only with the strict equality so that it remains valid in any exten-
sion of MLTT. We prove that assuming a model structure on U i (with a mild property on
fibrancy) is incompatible with univalence. We already mentioned that assuming a fibrant
replacement on HTS is inconsistent. The next theorem can thus be seen as a generaliza-
tion of this result (and the proof follows the same lines). It has been formalized in the file
Impossibility.v and was suggested to us by Paolo Capriotti.
§ Theorem 2. A model structure on U i such that

if for all x, P x is fibrant, then p1 : SxP x Ñ A is a fibration (‹)

is incompatible with an univalent interpretation.

Proof. From the model structure on U i (actually, only the (AC,F)-wfs is sufficient), we can
define the identity type. For a type A, we define IpAq from the (AC,F)-factorization of the
diagonal

A A ˆ A

IpAq

dA

r0
A

pA
e : pA ˝ r0

A ” dA

Then we can define IdA : A Ñ A Ñ U i by IdA :“ l x, y. Sw:IpAq pA w ” px, yq and
rA : Px IdA x x by rA :“ l x. pr0

A x, e xq (rA is still an acyclic fibration).
The lifiting property of the wfs allows to derive an eliminator. Let P : Px,y:A IdA x y Ñ U i
be a predicate such that for all x, y, p, P x y p is fibrant. And let h : PxP x x prA xq. Then we
have the following lifting problem:

A Sw:Sx, y Id x y P w

Sx, y IdA x y Sx, y IdA x y

prA , hq

rA p1

id
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The lifiting property of the wfs allows to derive the J eliminator. 
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Model Structure on Types

Impossibility Result: No model structure on HTS exists, for which

and 

Id  is equivalent to =. 
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Idea of the Proof: 

The proof is similar to the proof of Capriotti and 
goes by proving that Id satisfies UIP, so it can not be 
equivalent to =.
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Notion of Fibrancy

We would like to suggest a variant of HTS which may 
solve the issue.
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We would like to suggest a variant of HTS which may 
solve the issue.

Disclaimer:  We have no model for this new system 
  for the moment.  
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A Context-Dependent 
Notion of Fibrancy

The idea is to have a new judgment for fibrancy 

Simon Boulier and Nicolas Tabareau 13

But rA is an acyclic cofibration and p1 is a fibration because of (‹), hence we have a morph-
ism JA,Pphq filling the diagonal, and thus an eliminator.
We also have a fibrant replacement A (fibrant by construction) defined by the factorization
of A Ñ 1:

A 1

A
hA

We will now prove that IdA satisfies UIP for every type A.
By elimination of the strict equality, we have for all x and y in A, a function i : x ” y Ñ
IdA x y, and for all e and e1 in x ” y, we have a function e ” e1 Ñ Id

Id x y pi eq pi e1q.
Then, for all p in IdA x y, we have P r : x ” y. Id

Id x y p pi rq by using the J eliminator (as
this type is fibrant), applying UIP to change r in reflx and then applying r

Id x x.
We have now all we need to prove that for all p in IdA x x, we have Id

Id x x p rA (from
which we easily conclude UIP for IdA).
From the previous step it is sufficient to prove that: P r : x ” x. Id

Id x x p pi rq Ñ Id

Id x x p rA.
But as Id

Id x x p rA is fibrant we can apply h and it is sufficient to have

pP r : x ” x. Id

Id x x p pi rqq Ñ Id

Id x x p rA,

which is inhabited because ipreflxq ”abh rA.
We have shown that

for all p, q : IdA x y, Id

IdA x y p q

which is inconsistent with univalence for Id. û

Consequences

First, we can check that the definition 11 of fibrations satisfies (‹) hence we have:

§ Consequence 1. There is no model structure on U i in HTS such that fibrations are retracts
of p1 of fibrant predicates.

Secondly, we have:

§ Consequence 2. There is no model structure on U i reflecting the fibrations of the simplicial
model (i.e., such as f : A Ñ B is a fibration iff J f K : G.A Ñ G.B is a fibration in sSet).

Proof. In that case, both premise and conclusion of (‹) are interpreted as “G.A.P Ñ G.A
fibration in sSet”, so (‹) is trivially valid. û

4.2 A Context-Dependent Notion of Fibrancy
The impossibility result described above suggests that we should look for an extension of
MLTT which reflects the model structure of sSet in a better way. In particular, we must
have a finer management of fibrancy which invalidates (‹).
We propose a type system with a notion of uniform fibrancy. It invalidates the proof of
inconsistency and allows us to describe a model structure on U i. Unfortunately, we are not
able to interpret it in the simplicial model for the moment, so we only sketch it here and
leave its complete development for future work.
The idea is to have a new typing judgment G $ pD ; Aq Fib (D is another context) which
means that, in context G, the type family A : D Ñ U i is uniformly fibrant.

which says that in context    the family                    is uniformly fibrant.
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We propose a type system with a notion of uniform fibrancy. It invalidates the proof of
inconsistency and allows us to describe a model structure on U i. Unfortunately, we are not
able to interpret it in the simplicial model for the moment, so we only sketch it here and
leave its complete development for future work.
The idea is to have a new typing judgment G $ pD ; Aq Fib (D is another context) which
means that, in context G, the type family A : D Ñ U i is uniformly fibrant.
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For instance for P types the fibrancy rule becomes:

G, D, x : A $ B : U i G $ pD, x : A ; Bq Fib

G $ pD ; P x : A. Bq Fib

The elimination rule of univalent identity types is then restricted to uniform fibrant families:

G $ t, t1 : A G $ p : t “A t1

G $ py : A, q : t “A y ; Pq Fib G $ u : P ty :“ t, q :“ 1tu
G $ J“pA, y.q.P, t, t1, p, uq : P

 
y :“ t1, q :“ p

(

There are also straightforward rules for S, “ and universes.
In our system, it is always possible to derive pointwise fibrancy from uniform fibrancy:

G $ pD, D1 ; Aq Fib

G, D $ pD1 ; Aq Fib

However, pointwise fibrancy does not imply uniform fibrancy, which is the reason why
condition (‹) is not satisfied in this system. This allows us to add a notion of “pointwise”
fibrant replacement:

G $ A : U i

G $ A : U i

G $ A : U i

G $ hA : A Ñ A
G $ A : U i G $ p . ; Bq Fib

G $ recA,B : pA Ñ Bq Ñ pA Ñ Bq

recA,B f phA xq ” f x recA,B p f ˝ hAq x ” f x

The fibrant replacement provides only pointwise fibrant families (i.e., in the empty context):

G $ A : U i

G $ p . ; Aq Fib

that’s why the inconsistency proof of the fibrant replacement cannot be rephrased anymore.
In our system, a fibration is defined as a retract of a p1 : SxP x Ñ A such that G $
pA ; Pq Fib and a function f : A Ñ B is weak-equivalence if f : A Ñ B is a type equi-
valence (Def. 10). Here, the fibrant replacement plays the role of geometric realization in
Definition 9. Then we have an (AC,F)-wfs on U i given by:

A B

Sy:B Sx:A f x “ h y

f

lx. p f x, h x, 1h p f xqq
„

p1

The (C,AF)-wfs of Section 3.5 generalizes to U i without any change. By using the fact that
the fibrant replacement defines a modality, we have shown in the directory CtxFibrancy
of the formalization:

§ Theorem 3. The two factorization systems given above form a model structure on U i.

5 Conclusion and Future Work

In this paper, we have formalized model structures in Martin Löf type theory with a strict
equality and defined a model structure on fibrant types in the Homotopy Type System. We
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Hack in Coq

A similar—although trickier—hack works to emulate 
this new system in Coq.



Model Structures on Types in Type Theory 39

Weak Equivalences Revisited

14 Model Structures on Types in Type Theory

For instance for P types the fibrancy rule becomes:

G, D, x : A $ B : U i G $ pD, x : A ; Bq Fib

G $ pD ; P x : A. Bq Fib

The elimination rule of univalent identity types is then restricted to uniform fibrant families:

G $ t, t1 : A G $ p : t “A t1

G $ py : A, q : t “A y ; Pq Fib G $ u : P ty :“ t, q :“ 1tu
G $ J“pA, y.q.P, t, t1, p, uq : P

 
y :“ t1, q :“ p

(

There are also straightforward rules for S, “ and universes.
In our system, it is always possible to derive pointwise fibrancy from uniform fibrancy:

G $ pD, D1 ; Aq Fib

G, D $ pD1 ; Aq Fib

However, pointwise fibrancy does not imply uniform fibrancy, which is the reason why
condition (‹) is not satisfied in this system. This allows us to add a notion of “pointwise”
fibrant replacement:

G $ A : U i

G $ A : U i

G $ A : U i

G $ hA : A Ñ A
G $ A : U i G $ p . ; Bq Fib

G $ recA,B : pA Ñ Bq Ñ pA Ñ Bq

recA,B f phA xq ” f x recA,B p f ˝ hAq x ” f x

The fibrant replacement provides only pointwise fibrant families (i.e., in the empty context):

G $ A : U i

G $ p . ; Aq Fib

that’s why the inconsistency proof of the fibrant replacement cannot be rephrased anymore.
In our system, a fibration is defined as a retract of a p1 : SxP x Ñ A such that G $
pA ; Pq Fib and a function f : A Ñ B is weak-equivalence if f : A Ñ B is a type equi-
valence (Def. 10). Here, the fibrant replacement plays the role of geometric realization in
Definition 9. Then we have an (AC,F)-wfs on U i given by:

A B

Sy:B Sx:A f x “ h y

f

lx. p f x, h x, 1h p f xqq
„

p1

The (C,AF)-wfs of Section 3.5 generalizes to U i without any change. By using the fact that
the fibrant replacement defines a modality, we have shown in the directory CtxFibrancy
of the formalization:

§ Theorem 3. The two factorization systems given above form a model structure on U i.

5 Conclusion and Future Work

In this paper, we have formalized model structures in Martin Löf type theory with a strict
equality and defined a model structure on fibrant types in the Homotopy Type System. We

14 Model Structures on Types in Type Theory

For instance for P types the fibrancy rule becomes:

G, D, x : A $ B : U i G $ pD, x : A ; Bq Fib

G $ pD ; P x : A. Bq Fib

The elimination rule of univalent identity types is then restricted to uniform fibrant families:

G $ t, t1 : A G $ p : t “A t1

G $ py : A, q : t “A y ; Pq Fib G $ u : P ty :“ t, q :“ 1tu
G $ J“pA, y.q.P, t, t1, p, uq : P

 
y :“ t1, q :“ p

(

There are also straightforward rules for S, “ and universes.
In our system, it is always possible to derive pointwise fibrancy from uniform fibrancy:

G $ pD, D1 ; Aq Fib

G, D $ pD1 ; Aq Fib

However, pointwise fibrancy does not imply uniform fibrancy, which is the reason why
condition (‹) is not satisfied in this system. This allows us to add a notion of “pointwise”
fibrant replacement:

G $ A : U i

G $ A : U i

G $ A : U i

G $ hA : A Ñ A
G $ A : U i G $ p . ; Bq Fib

G $ recA,B : pA Ñ Bq Ñ pA Ñ Bq

recA,B f phA xq ” f x recA,B p f ˝ hAq x ” f x

The fibrant replacement provides only pointwise fibrant families (i.e., in the empty context):

G $ A : U i

G $ p . ; Aq Fib

that’s why the inconsistency proof of the fibrant replacement cannot be rephrased anymore.
In our system, a fibration is defined as a retract of a p1 : SxP x Ñ A such that G $
pA ; Pq Fib and a function f : A Ñ B is weak-equivalence if f : A Ñ B is a type equi-
valence (Def. 10). Here, the fibrant replacement plays the role of geometric realization in
Definition 9. Then we have an (AC,F)-wfs on U i given by:

A B

Sy:B Sx:A f x “ h y

f

lx. p f x, h x, 1h p f xqq
„

p1

The (C,AF)-wfs of Section 3.5 generalizes to U i without any change. By using the fact that
the fibrant replacement defines a modality, we have shown in the directory CtxFibrancy
of the formalization:

§ Theorem 3. The two factorization systems given above form a model structure on U i.

5 Conclusion and Future Work

In this paper, we have formalized model structures in Martin Löf type theory with a strict
equality and defined a model structure on fibrant types in the Homotopy Type System. We

Similar to the definition of weak equivalences in the simplicial model

From ncatlab.org

http://ncatlab.org


Model Structures on Types in Type Theory 40

(AC/F) WFS revisited

The factorisation of a function f as an AC/F now makes 
use of the fibrant replacement.
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the fibrant replacement defines a modality, we have shown in the directory CtxFibrancy
of the formalization:

§ Theorem 3. The two factorization systems given above form a model structure on U i.

5 Conclusion and Future Work

In this paper, we have formalized model structures in Martin Löf type theory with a strict
equality and defined a model structure on fibrant types in the Homotopy Type System. We
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Model Structure on Type

Theorem:  there is a model structure on Type in this new system.
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Doggy bag of the talk

1. In HTS, we can define model structures and show  
that there is a model structure on fibrant types.

2. Among mild assumptions, there is no model structure  
on all types in HTS.  

3. We propose an (unproven) refinement of HTS that  
admits a model structure on all type based on the  
notion of uniform fibrancy.

4. This model structure can be used to justify/compute  
homopical limits and colimits.


