Modelling Cubical Type Theory in Agda

lan Orton (joint work with Andrew Pitts)

Workshop on HoTT/UF '16, Porto

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

Covering:

► The internal type theory of a topos

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

- The internal type theory of a topos
- Translating this into Agda

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

- The internal type theory of a topos
- Translating this into Agda
- Our axiomatisation

Axioms for Modelling Cubical Type Theory in a Topos, CSL 2016

- The internal type theory of a topos
- Translating this into Agda
- Our axiomatisation
- Why this is a good approach

► Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos *E* (with families over *X* ≃ *E*/*X*).

- ► Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos *E* (with families over *X* ≃ *E*/*X*).
- The subobject classifier Ω becomes an impredicative universe of propositions with logical connectives, equality and quantifiers.

- ► Standard interpretation of extensional MLTT in a category with families (CwF) associated with any topos *E* (with families over *X* ≃ *E*/*X*).
- The subobject classifier Ω becomes an impredicative universe of propositions with logical connectives, equality and quantifiers.
- The universal property of Ω gives rise to comprehension subtypes...

Comprehension subtypes

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

 $\frac{\Gamma, x : A \vdash \varphi(x) : \Omega}{\Gamma \vdash \{x : A \mid \varphi(x)\}}$

whose terms are those t : A for which $\varphi(t)$ is provable.

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

An impredicative universe of (mere) propositions
 – to model the subobject classifier Ω

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

- An impredicative universe of (mere) propositions
 to model the subobject classifier Ω
- Comprehension subtypes

In order to apply the same reasoning that we use in the paper we need to extend Agda with:

- An impredicative universe of (mere) propositions
 to model the subobject classifier Ω
- Comprehension subtypes
- Function extensionality

An impredicative universe of propositions

We use an idea of Martin Escardo¹:

^{1.} www.cs.bham.ac.uk/~mhe/impredicativity/

An impredicative universe of propositions

We use an idea of Martin Escardo¹:

```
{-# OPTIONS --type-in-type #-}
```

- -- the following definition relies on type-in-type,
- -- which is switched on only in this module

```
record Ω : Set where
  constructor prop
  field
    prf : Set
    equ : (u v : prf) → u ≡ v
```

^{1.} www.cs.bham.ac.uk/~mhe/impredicativity/

Comprehension subtypes

We simply form the sigma type:

-- Comprehension set : $(A : Set)(P : A \rightarrow \Omega) \rightarrow Set$ set $A P = \Sigma x \in A$, prf (P x)syntax set $A (\lambda x \rightarrow P) = [[x \in A | P]]$

Comprehension subtypes

For example:

```
Evens : Set
Evens = [n \in \mathbb{N} \mid \exists m \in \mathbb{N}, 2 * m \approx n]
four : Evens
four = (4 , | 2 , refl |)
```

Elementary topos \mathcal{E} (with a NNO), and

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos ${\cal U}$

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos ${\cal U}$
- An interval object I

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos U
- An interval object I

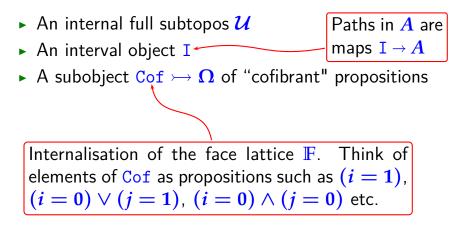
Paths in A are maps $I \rightarrow A$

Elementary topos \mathcal{E} (with a NNO), and

- An internal full subtopos ${\cal U}$
- An interval object I \frown maps I \rightarrow A
- A subobject $Cof \rightarrow \Omega$ of "cofibrant" propositions

Paths in A are

Elementary topos \mathcal{E} (with a NNO), and

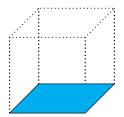


How do we model the Kan filling operation from cubical type theory?

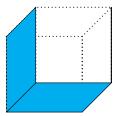
 Γ , $i: I \vdash fill^i \land [\varphi \mapsto u] a0 : A$

$$\Gamma, \ i: I \vdash fill^i \ A \ [\varphi \mapsto u] \ a0 \ : \ A$$

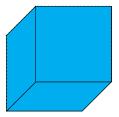
$$\Gamma, \ i: I \vdash fill^i \land [\varphi \mapsto u] \ a0 \ : \ A$$



$$\Gamma, \ i: I \vdash fill^i \land [\varphi \mapsto u] \ a0 \ : \ A$$



$$\Gamma, \ i: I \vdash fill^i \land [\varphi \mapsto u] \ a0 \ : \ A$$



Modelling partial terms/types

How do we model partial types?

 $\Gamma, \varphi \vdash A$

And partial terms?

 $\Gamma, \varphi \vdash a : A$

Comprehension subtypes again

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

 $\frac{\Gamma, x : A \vdash \varphi(x) : \Omega}{\Gamma \vdash \{x : A \mid \varphi(x)\}}$

whose terms are those t : A for which $\varphi(t)$ is provable.

Comprehension subtypes again

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

 $\frac{\Gamma, x : A \vdash \varphi(x) : \Omega}{\Gamma \vdash \{x : A \mid \varphi(x)\}}$

whose terms are those t : A for which $\varphi(t)$ is provable.

In particular we can take A = 1 to get:

 $[\varphi] \triangleq \{_: 1 \mid \varphi\}$

Comprehension subtypes again

For any type $\Gamma \vdash A$ we can form comprehension subtypes:

 $\frac{\Gamma, x : A \vdash \varphi(x) : \Omega}{\Gamma \vdash \{x : A \mid \varphi(x)\}}$

whose terms are those t : A for which $\varphi(t)$ is provable.

In particular we can take A = 1 to get:

$$[oldsymbol{arphi}] riangleq \{_\,:\, 1 \mid oldsymbol{arphi}\}$$

We will make extensive use of these types in connection with partial elements.

Partial elements

A partial element of a type A is a pair:

- $\varphi: \Omega$, called the extent
- $f: [\varphi] \to A$.

Partial elements

A partial element of a type A is a pair:

- $\varphi: \Omega$, called the extent
- $f: [\varphi] \to A$.

Later we will want to talk about extending a partial element to a total one:

Partial elements

A partial element of a type A is a pair:

- $\varphi: \Omega$, called the extent
- $f: [\varphi] \to A$.

Later we will want to talk about extending a partial element to a total one:

We say that a partial element (φ, f) extends to a : A if the following relation holds:

 $(\varphi, f) \nearrow a \triangleq \forall (u : [\varphi]). f u = a$

Filling in the internal TT

The notion of Kan filling in our internal type theory:

Filling in the internal TT

The notion of Kan filling in our internal type theory:

The type of filling structures for I-indexed families of types, Fill: $(e: \{0,1\})(A: I \rightarrow U) \rightarrow U$, is defined by

Fill
$$e A \triangleq$$

 $(\varphi: \operatorname{Cof})(f: [\varphi] \to \Pi_{\mathrm{I}} A)$
 $(a: \{a': A e \mid (\varphi, f) @ e \nearrow a'\})$
 $\stackrel{\rightarrow}{=} \{g: \Pi_{\mathrm{I}} A \mid (\varphi, f) \nearrow g \land g e = a\}$

Filling in Agda

```
Fill e A \triangleq

(\varphi: \operatorname{Cof})(f: [\varphi] \to \Pi_{I}A)

(a: \{a': A e \mid (\varphi, f) @ e \nearrow a'\})

\to

\{g: \Pi_{I}A \mid (\varphi, f) \nearrow g \land g e = a\}
```

Filling in Agda

Fill
$$e A \triangleq$$

 $(\varphi : \operatorname{Cof})(f : [\varphi] \to \Pi_{I}A)$
 $(a : \{a' : A e \mid (\varphi, f) @ e \nearrow a'\})$
 \rightarrow
 $\{g : \Pi_{I}A \mid (\varphi, f) \nearrow g \land g e = a\}$
Fill $e A =$
 $(\varphi : \operatorname{Cof})(f : [\varphi] \to \Pi A)$
 $(a : [a' \in A \langle e \rangle \mid (\varphi, f) \cdot \langle e \rangle \nearrow a'])$
 \rightarrow
 $[g \in \Pi A \mid ((\varphi, f) \nearrow g) \& (g \langle e \rangle \approx \text{fst } a)]]$

Start with a candidate topos *E*

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$
 - prove these externally

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$
 - prove these externally
- Express these properties in the internal type theory

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$
 - prove these externally
- Express these properties in the internal type theory

 postulate them in Agda

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$
 - prove these externally
- Express these properties in the internal type theory

 postulate them in Agda
- Construct proofs internally

- Start with a candidate topos *E*
- Identify the key properties of ${\cal E}$
 - prove these externally
- Express these properties in the internal type theory

 postulate them in Agda
- Construct proofs internally

- easily translate them into Agda

 Start with some candidate axioms in the internal type theory

 Start with some candidate axioms in the internal type theory

- postulate them in Agda

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
- Look for models of these axioms

- Start with some candidate axioms in the internal type theory
 - postulate them in Agda
- Construct proofs internally
 - easily translate them into Agda
- Look for models of these axioms
 - e.g. classifying topos for the theory

Thanks for listening!

Axioms for Modelling Cubical Type Theory in a Topos

Ian Orton and Andrew Pitts, CSL 2016

Paper and Agda: http://www.cl.cam.ac.uk/~rio22/

Ian.Orton@cl.cam.ac.uk Andrew.Pitts@cl.cam.ac.uk