
Homotopy Type Theory in Lean

Floris van Doorn

Department of Philosophy
Carnegie Mellon University

http://leanprover.github.io

25 June 2016

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 1 / 44

http://leanprover.github.io


Outline

The Lean Theorem Prover
Lean’s kernel
Lean’s elaborator
Demo
The HoTT library

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 2 / 44



The Lean Theorem Prover

Lean is a new interactive theorem prover, developed principally by Leonardo
de Moura at Microsoft Research, Redmond.

It was “announced” in the summer of 2015.

It is open source, released under a permissive license, Apache 2.0.

The goal is to make it a community project, like Clang.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 3 / 44



The Lean Theorem Prover

The aim is to bring interactive and automated reasoning together, and
build

an interactive theorem prover with powerful automation
an automated reasoning tool that

I produces (detailed) proofs,
I has a rich language,
I can be used interactively, and
I is built on a verified mathematical library.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 4 / 44



The Lean Theorem Prover

Lean is a designed to be a mature system, rather than an experimental one.

Take advantage of existing theory.
Build on strengths of existing interactive and automated theorem
provers.
Craft clean but pragmatic solutions.

We have drawn ideas and inspiration from Coq, SSReflect, Isabelle, Agda,
and Nuprl, among others.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 5 / 44



The Lean Theorem Prover

Notable features:
based on a powerful dependent type theory
written in C++, with multi-core support
small, trusted kernel with an independent type checker
standard and HoTT instantiations
powerful elaborator
can use proof terms or tactics
Emacs mode with proof-checking on the fly
browser version runs in javascript
already has a respectable library
automation is now the main focus

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 6 / 44



Contributors

Currently working on the code base: Leonardo de Moura, Daniel Selsam,
Lev Nachman, Soonho Kong

Currently working the standard library: Jeremy Avigad, Rob Lewis, Jacob
Gross

Currently working on the HoTT library: Floris van Doorn, Ulrik Buchholtz,
Jakob von Raumer

Contributors: Cody Roux, Joe Hendrix, Parikshit Khanna, Sebastian
Ullrich, Haitao Zhang, Andrew Zipperer, and many others.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 7 / 44



Lean’s kernel

Lean’s kernel implements dependent type theory with
A hierarchy of (non-cumulative) universes:
Type.{0} : Type.{1} : Type.{2} : Type.{3} : ...

universe polymorphism:
definition id.{u} {A : Type.{u}} : A → A := λa, a

dependent products: Πx : A, B

inductive types (à la Dybjer, constructors and recursors)

The kernel is smaller and simpler than those of Coq and Agda.

Daniel Selsam has written an independent type checker in Haskell, which is
less than 2,000 lines long.

The kernel can be instantiated into two modes, a standard mode and the
HoTT mode.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 8 / 44



Lean’s kernel

Definitions like these are compiled down to recursors:

definition tail {A : Type} :
Π{n}, vector A (succ n) → vector A n

| tail (h :: t) := t

definition zip {A B : Type} :
Π{n}, vector A n → vector B n → vector (A × B) n

| zip nil nil := nil
| zip (a::va) (b::vb) := (a, b) :: zip va vb

definition diag : Π{n}, vector (vector A n) n → vector A n
| diag nil := nil
| diag ((a :: v) :: M) := a :: diag (map tail M)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 9 / 44



Standard mode

Specific to the standard mode:
Type.{0} (aka Prop) is impredicative and proof irrelevant.
quotient types (lift f H (quot.mk x) = f x definitionally).

We use additional axioms for classical reasoning: propositional
extensionality, Hilbert choice.
Lean keeps track of which definitions are computable.

noncomputable definition inv_fun (f : X → Y)
(s : set X) (dflt : X) (y : Y) : X :=

if H : ∃0 x ∈ s, f x = y then some H else dflt

definition add (x y : R) : R := ...

noncomputable definition div (x y : R) : R :=
x ∗ y−1

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 10 / 44



HoTT mode

In the HoTT mode:
There is no Prop.
There are two primitive HITs in Lean: the n-truncation and quotients.
Given A : U and R : A→ A→ U the quotient is:
HIT quotientA(R) :=

I q : A→ quotientA(R)
I Π(x , y : A), R(x , y)→ q(x) = q(y)

Many HITs can be constructed from these two.

The Univalence Axiom is assumed.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 11 / 44



Lean’s elaborator

Fully detailed expressions in dependent type theory are long.

Systems of dependent type theory allow users to leave a lot of information
implicit.

Such systems therefore:
Parse user input.
Fill in the implicit information.

The last step is known as “elaboration.”

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 12 / 44



Lean’s elaborator

Lean has a powerful elaborator that handles:
implicit universe levels
higher-order unification
computational reductions
ad-hoc overloading
coercions
type class inference
tactic proofs

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 13 / 44



Higher-order unification

variables {A : Type} {B : A → Type} {C : Πa, B a → Type}
definition sigma_transport {a1 a2 : A} (p : a1 = a2)

(x : Σ(b : B a1), C a1 b) : p . x = 〈p . x.1, p .D x.2〉 :=
by induction p; induction x; reflexivity

. is transport. .1 and .2 are projections.

The first transport is along the family λ(a : A), Σ(b : B a), C a b

The second transport is along B

The last transport is a “dependent transport” which is a map
C a1 x.1 → C a2 (p . x.1)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 14 / 44



Type classes

Structures and type class inference have been optimized to handle the
algebraic hierarchy.

The algebraic hierarchy consist of:
order structures (including lattices, complete lattices)
additive and multiplicative semigroups, monoids, groups, . . .
rings, fields, ordered rings, ordered fields, . . .
modules over arbitrary rings, vector spaces, normed spaces, . . .
homomorphisms preserving appropriate parts of structures

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 15 / 44



Type classes

structure has_mul [class] (A : Type) := (mul : A → A → A)

structure semigroup [class] (A : Type) extends has_mul A :=
(is_set_carrier : is_set A)
(mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c))

structure monoid [class] (A : Type) extends semigroup A, has_one A :=
(one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a)

variables {A : Type} [monoid A]
definition pow (a : A) : N → A
| 0 := 1
| (n+1) := pow n ∗ a

theorem pow_add (a : A) (m : N) : ∀n, a^(m + n) = a^m ∗ a^n
| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]
| (n+1) := by rewrite [add_succ, ∗pow_succ, pow_add, mul.assoc]

definition int.linear_ordered_comm_ring [instance] :
linear_ordered_comm_ring int := ...

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 16 / 44



Type classes

Type classes are also used in the standard library:
to infer straightforward facts (finite s, is_subgroup G)
to simulate classical reasoning constructively (decidable p)

They are used in the HoTT library:
for category theory
to infer truncatedness (is_trunc n A)
to infer half-adjoint equivalence (is_equiv f)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 17 / 44



Calculational proofs

∑
(a,b):Σa:AB(a)

C (a) '
∑

(a,b):Σa:AC(a)

B(a)

definition sigma_assoc_comm_equiv {A : Type} (B C : A → Type)
: (Σ(v : Σa, B a), C v.1) ' (Σ(u : Σa, C a), B u.1) :=

calc
(Σ(v : Σa, B a), C v.1)

' (Σa (b : B a), C a) : sigma_assoc_equiv
... ' (Σa (c : C a), B a) : sigma_equiv_sigma_right

(λa, !comm_equiv_nondep)
... ' (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 18 / 44



Tactics and terms

In Lean, we can present a proof as a term, as in Agda, with nice syntactic
sugar.

We can also use tactics.

The two modes can be mixed freely:
anywhere a term is expected, begin ... end or by enter tactic mode.
within tactic mode, have ..., from ... or show ..., from ...
or exact specify terms.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 19 / 44



Example term proof

theorem sqrt_two_irrational {a b : N} (co : coprime a b) :
a^2 6= 2 ∗ b^2 :=

assume H : a^2 = 2 ∗ b^2,
have even (a^2),

from even_of_exists (exists.intro _ H),
have even a,

from even_of_even_pow this,
obtain (c : N) (aeq : a = 2 ∗ c),

from exists_of_even this,
have 2 ∗ (2 ∗ c^2) = 2 ∗ b^2,

by rewrite [-H, aeq, ∗pow_two, mul.assoc, mul.left_comm c],
have 2 ∗ c^2 = b^2,

from eq_of_mul_eq_mul_left dec_trivial this,
have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),
have even b,

from even_of_even_pow this,
assert 2 | gcd a b,

from dvd_gcd (dvd_of_even 8even a8) (dvd_of_even 8even b8),
have 2 | 1,

by rewrite [gcd_eq_one_of_coprime co at this]; exact this,
show false,

from absurd 82 | 18 dec_trivial

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 20 / 44



Example tactic proof

variable (P : S1 → Type)
definition circle.rec_unc (v : Σ(p : P base), p =[loop] p)

: Π(x : S1), P x :=
begin

intro x, induction v with p q, induction x,
{ exact p},
{ exact q}

end

definition circle_pi_equiv
: (Π(x : S1), P x) ' Σ(p : P base), p =[loop] p :=

begin
fapply equiv.MK,
{ intro f, exact 〈f base, apd f loop〉},
{ exact circle.rec_unc P},
{ intro v, induction v with p q, fapply sigma_eq,

{ reflexivity},
{ esimp, apply pathover_idp_of_eq, apply rec_loop}},

{ intro f, apply eq_of_homotopy, intro x, induction x,
{ reflexivity},
{ apply eq_pathover_dep, apply hdeg_squareover, esimp, apply rec_loop}}

end

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 21 / 44



Current plans

Leo is now doing a major rewrite of the system.
The elaborator will be slightly less general, but much more stable and
predictable.
“Let” definitions will be added to the kernel.
There will be a better foundation for automation (e.g. goals with
indexed hypotheses).
There will be a byte-code compiler and fast evaluator for Lean.
This makes it possible to use Lean as an interpreted programming
language.
Monadic interfaces will make it possible to write custom tactics from
within Lean.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 22 / 44



Automation

Plans for automation:
A general theorem prover and term simplifier, with

I awareness of type classes
I powerful unification and e-matching

Custom methods for arithmetic reasoning, linear and nonlinear
inequalities.
A flexible framework for adding domain specific tools.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 23 / 44



Standard library

Already has:
datatypes: booleans, lists, tuples, finsets, sets
number systems: nat, int, rat, real, complex
the algebraic hierarchy, through ordered fields
“big operations”: finite sums and products, etc.
elementary number theory (e.g. primes, gcd’s, unique factorization,
etc.)
elementary set theory
elementary group theory
beginnings of analysis: topological spaces, limits, continuity, the
intermediate value theorem

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 24 / 44



Demo

Browser version available at:
https://leanprover.github.io/tutorial/?live&hott

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 25 / 44

https://leanprover.github.io/tutorial/?live&hott


HoTT library

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 + + + + + + +

2 + + + + + + + + + + + + + +

3 + + + + 1
2 + + + + +

4 - + + + + + + +

5 - 1
2 - - 1

2

6 + + + + + + + 3
4

1
4

3
4 +

7 + + + - 3
4 - -

8 + + + + + 3
4 + + + 1

4

9 3
4 + + 1

2
3
4

1
2 - - -

10 1
4 - - - -

11 - - - - - -

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 26 / 44



Statistics

HoTT-Lean: ∼28k LOC
HoTT-Coq: ∼31k LOC (in theories/ folder)
HoTT-Agda: ∼18k LOC (excluding old/ folder)
UniMath: ∼52k LOC

(excluding blank lines and single-line comments)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 27 / 44



Higher-inductive types

There are two primitive HITs in Lean: the n-truncation and quotients.

We define all other HITs in terms of these. We can define
colimits;
pushouts, hence also suspensions, spheres, joins, . . .
the propositional truncation;
HITs with 2-constructors, such as the torus and Eilenberg-MacLane
spaces K (G , 1);
[WIP] n-truncations and certain (ω-compact) localizations (Egbert
Rijke, vD).

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 28 / 44



Lean-HoTT library

Furthermore, the library includes:
A library of squares, cubes, pathovers, squareovers, cubeovers (based
on the paper by Licata and Brunerie)

definition circle.rec {P : S1 → Type}
(Pbase : P base) (Ploop : Pbase =[loop] Pbase)
(x : S1) : P x

A library of pointed types, pointed maps, pointed homotopies, pointed
equivalences

definition loopn_ptrunc_pequiv
(n : N−2) (k : N) (A : Type∗) :
Ω[k] (ptrunc (n+k) A) '∗ ptrunc n (Ω[k] A)

Some category theory which is not in the book, e.g. limits, colimits
and exponential laws:

definition functor_functor_iso (C D E : Precategory) :
(C ^c D) ^c E ∼=c C ^c (E ×c D)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 29 / 44



Lean-HoTT library

Furthermore, the library includes:
A library of squares, cubes, pathovers, squareovers, cubeovers (based
on the paper by Licata and Brunerie)

definition circle.rec {P : S1 → Type}
(Pbase : P base) (Ploop : Pbase =[loop] Pbase)
(x : S1) : P x

A library of pointed types, pointed maps, pointed homotopies, pointed
equivalences

definition loopn_ptrunc_pequiv
(n : N−2) (k : N) (A : Type∗) :
Ω[k] (ptrunc (n+k) A) '∗ ptrunc n (Ω[k] A)

Some category theory which is not in the book, e.g. limits, colimits
and exponential laws:

definition functor_functor_iso (C D E : Precategory) :
(C ^c D) ^c E ∼=c C ^c (E ×c D)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 29 / 44



Lean-HoTT library

Furthermore, the library includes:
A library of squares, cubes, pathovers, squareovers, cubeovers (based
on the paper by Licata and Brunerie)

definition circle.rec {P : S1 → Type}
(Pbase : P base) (Ploop : Pbase =[loop] Pbase)
(x : S1) : P x

A library of pointed types, pointed maps, pointed homotopies, pointed
equivalences

definition loopn_ptrunc_pequiv
(n : N−2) (k : N) (A : Type∗) :
Ω[k] (ptrunc (n+k) A) '∗ ptrunc n (Ω[k] A)

Some category theory which is not in the book, e.g. limits, colimits
and exponential laws:

definition functor_functor_iso (C D E : Precategory) :
(C ^c D) ^c E ∼=c C ^c (E ×c D)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 29 / 44



Homotopy Theory in Lean

Loop space of the circle:

definition base_eq_base_equiv : base = base ' Z
definition fundamental_group_of_circle : π1(S1.) = gZ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 30 / 44



Homotopy Theory in Lean

Connectedness of suspensions (by Ulrik Buchholtz):

definition is_conn_susp (n : N−2) (A : Type)
[H : is_conn n A] : is_conn (n .+1) (susp A)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 31 / 44



Homotopy Theory in Lean

The Hopf fibration (by Ulrik Buchholtz):

variables (A : Type) [H : h_space A] [K : is_conn 0 A]

definition hopf : susp A → Type :=
susp.elim_type A A

(λa, equiv.mk (λx, a ∗ x) !is_equiv_mul_left)

definition hopf.total (A : Type) [H : h_space A]
[K : is_conn 0 A] : sigma (hopf A) ' join A A

definition circle_h_space : h_space S1

definition sphere_three_h_space : h_space (S 3)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 32 / 44



Homotopy Theory in Lean

Some results are ported from Agda, such as the Freudenthal equivalence

definition freudenthal_pequiv (A : Type∗) {n k : N}
[is_conn n A] (H : k ≤ 2 ∗ n) :
ptrunc k A '∗ ptrunc k (Ω (psusp A))

and the associativity of join (by Jakob von Raumer)

definition join.assoc (A B C : Type) :
join (join A B) C ' join A (join B C)

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 33 / 44



Homotopy Theory in Lean

Truncated Whitehead’s principle:

definition whitehead_principle (n : N−2) {A B : Type}
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B)
(H′ : is_equiv (trunc_functor 0 f))
(H : Πa k, is_equiv

(π→∗[k + 1] (pmap_of_map f a))) :
is_equiv f

Here ‘pmap_of_map f a’ is the pointed map (A, a)
f→ (B, f (a)).

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 34 / 44



Homotopy Theory in Lean

Eilenberg-MacLane spaces (based on the paper by Licata and Finster):

definition EM : CommGroup → N → Type∗

variables (G : CommGroup) (n : N)
definition homotopy_group_EM :
πg[n+1] (EM G (n+1)) 'g G

theorem is_conn_EM : is_conn (n.-1) (EM G n)
theorem is_trunc_EM : is_trunc n (EM G n)

definition EM_pequiv_1 {X : Type∗} (e : π1 X 'g G)
[is_conn 0 X] [is_trunc 1 X] : EM G 1 '∗ X

-- TODO for n > 1

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 35 / 44



Homotopy Theory in Lean

Seifert-van Kampen Theorem:

definition vankampen {S A B C : Type} (k : S → C)
(f : C → A) (g : C → B) [is_surjective k]
(x y : A + B) :
@hom (Π1 (pushout f g)) _

(pushout_of_sum f g x) (pushout_of_sum f g y) '
@hom (Groupoid_bpushout k (Π1⇒ f) (Π1⇒ g)) _ x y

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 36 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

The long exact sequence of homotopy groups.

Given a pointed map f : X → Y .

Define F :≡ fiberf (y0) :≡ (Σ(x : X ), f (x) = y0).

YXFF (2)F (3)F (4)F (5)F (6)

ΩYΩXΩFΩF (2)ΩF (3)

Ω2YΩ2X
'''''

''

fp1p(2)
1p(3)

1p(4)
1p(5)

1p(6)
1

−Ωf−Ωp1−Ωp(2)
1−Ωp(3)

1

Ω2f

δ

−Ωδ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 37 / 44



LES of homotopy groups

π0(Y )π0(X )π0(F )

π1(Y )π1(X )π1(F )

π2(Y )π2(X )π2(F )

π0(f )

π0(p1)

π0(δ)

− π1(f )

− π1(p1)

− π1(δ)

π2(f )

π2(p1)

How do we formulate this?

The obvious thing is to have a
sequence Z : N→ U and maps
fn : Zn+1 → Zn.

Problem: Z3n = πn(Y ) doesn’t
hold definitionally, hence
f3n = πn(f ) isn’t even well-typed.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 38 / 44



LES of homotopy groups

π0(Y )π0(X )π0(F )

π1(Y )π1(X )π1(F )

π2(Y )π2(X )π2(F )

π0(f )

π0(p1)

π0(δ)

− π1(f )

− π1(p1)

− π1(δ)

π2(f )

π2(p1)

How do we formulate this?

The obvious thing is to have a
sequence Z : N→ U and maps
fn : Zn+1 → Zn.

Problem: Z3n = πn(Y ) doesn’t
hold definitionally, hence
f3n = πn(f ) isn’t even well-typed.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 38 / 44



LES of homotopy groups

π0(Y )π0(X )π0(F )

π1(Y )π1(X )π1(F )

π2(Y )π2(X )π2(F )

π0(f )

π0(p1)

π0(δ)

π1(f )

π1(p1)

π1(δ)

π2(f )

π2(p1)

How do we formulate this?

The obvious thing is to have a
sequence Z : N→ U and maps
fn : Zn+1 → Zn.

Problem: Z3n = πn(Y ) doesn’t
hold definitionally, hence
f3n = πn(f ) isn’t even well-typed.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 38 / 44



LES of homotopy groups

π0(Y )π0(X )π0(F )

π1(Y )π1(X )π1(F )

π2(Y )π2(X )π2(F )

π0(f )

π0(p1)

π0(δ)

π1(f )

π1(p1)

π1(δ)

π2(f )

π2(p1)

How do we formulate this?

The obvious thing is to have a
sequence Z : N→ U and maps
fn : Zn+1 → Zn.

Problem: Z3n = πn(Y ) doesn’t
hold definitionally, hence
f3n = πn(f ) isn’t even well-typed.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 38 / 44



LES of homotopy groups

Better: Take Z : N× 3→ U , we can define Z by

Z(n,0) = πn(Y ) Z(n,1) = πn(X ) Z(n,2) = πn(F ).

Then we can define the maps fx : Zsucc(x) → Zx , where succ is the
successor function for N× 3.

We define chain complexes over an arbitrary type with a successor
operation.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 39 / 44



LES of homotopy groups

Better: Take Z : N× 3→ U , we can define Z by

Z(n,0) = πn(Y ) Z(n,1) = πn(X ) Z(n,2) = πn(F ).

Then we can define the maps fx : Zsucc(x) → Zx , where succ is the
successor function for N× 3.

We define chain complexes over an arbitrary type with a successor
operation.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 39 / 44



LES of homotopy groups

definition homotopy_groups : +3N → Set∗

| (n, fin.mk 0 H) := π∗[n] Y
| (n, fin.mk 1 H) := π∗[n] X
| (n, fin.mk k H) := π∗[n] (pfiber f)

definition homotopy_groups_fun : Π(n : +3N),
homotopy_groups (S n) →∗ homotopy_groups n

| (n, fin.mk 0 H) := π→∗[n] f
| (n, fin.mk 1 H) := π→∗[n] (ppoint f)
| (n, fin.mk 2 H) := π→∗[n] boundary_map ◦∗

pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y n))
| (n, fin.mk (k+3) H) := begin exfalso,

apply lt_le_antisymm H, apply le_add_left end

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 40 / 44



LES of homotopy groups

Then we prove:
These maps form a chain complex
This chain complex is exact
homotopy_groups (n + 2, k) are commutative groups.
homotopy_groups (1, k) are groups.
homotopy_groups_fun (n + 1, k) are group homomorphisms.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 41 / 44



LES of homotopy groups

Corollaries:

theorem is_equiv_π_of_is_connected {A B : Type∗}
{n k : N} (f : A →∗ B) [H : is_conn_fun n f]
(H2 : k ≤ n) : is_equiv (π→[k] f)

Combine with Hopf fibration:

definition π2S2 : πg[1+1] (S. 2) 'g gZ
definition πnS3_eq_πnS2 (n : N) :
πg[n+2 +1] (S. 3) 'g πg[n+2 +1] (S. 2)

Combine with Freudenthal Suspension Theorem:

definition πnSn (n : N) : πg[n+1] (S. (succ n)) 'g gZ
definition π3S2 : πg[2+1] (S. 2) 'g gZ

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 42 / 44



Conclusion

Lean is an exciting new proof assistant.
The Lean-HoTT library is quite big and growing quickly.
The Lean-HoTT library contains a good basis for serious
formalizations.

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 43 / 44



Thank you

Floris van Doorn (CMU) Homotopy Type Theory in Lean 25 June 2016 44 / 44


