Classifying types (jww Ulrik Buchholtz) and

The join construction

Egbert Rijke

Carnegie Mellon University erijke@andrew.cmu.edu

June 25th 2016, Porto

Part I: Classifying types (jww Ulrik Buchholtz)

Overview

- Definition of $\mathbb{R} P^{n}$.
- Definition of $\mathbb{C} P^{n}$.
- Principal H-spaces.
- The general projective space construction.
- The principal H-space structure of loop spaces.
- Principal H-spaces are pointed connected types.

$$
\begin{aligned}
\mathbb{R P} & : \mathbb{N}_{-1} \rightarrow \mathrm{U} \\
\operatorname{cov}_{2} & : \prod_{\left(n: \mathbb{N}_{-1}\right)} \mathbb{R} \mathrm{P}^{n} \rightarrow \mathrm{U}_{2}
\end{aligned}
$$

$$
\sum_{\left(x: \mathbb{R} P^{n}\right)} \operatorname{cov}_{2}^{n}(x) \longrightarrow \mathbf{1}
$$

- For each $n: \mathbb{N}$ there is an equivalence

$$
\mathbb{S}^{n} \simeq \sum_{\left(x: \mathbb{R} \mathbb{P}^{n}\right)} \operatorname{cov}_{2}^{n}(x)
$$

In other words, $\mathbb{R} \mathrm{P}^{n+1}$ is obtained by attaching an $(n+1)$-cell to $\mathbb{R} P^{n}$.

- We obtain the long exact sequence

$$
\cdots \longrightarrow \pi_{k+1}\left(\mathbb{R P}^{n}\right) \longrightarrow \pi_{k}(2) \longrightarrow \pi_{k}\left(\mathbb{S}^{n}\right) \longrightarrow \pi_{k}\left(\mathbb{R P}^{n}\right) \longrightarrow \cdots
$$

Since $\pi_{k}(2)=0$ for $k \geq 1$, we get the isomorphisms

$$
\pi_{k}\left(\mathbb{S}^{n}\right)=\pi_{k}\left(\mathbb{R} \mathrm{P}^{n}\right)
$$

for $k \geq 2$.

- The map

$$
\operatorname{cov}_{2}^{\infty}: \mathbb{R} \mathrm{P}^{\infty} \rightarrow \mathrm{U}_{2}
$$

is an equivalence.

$$
\mathcal{O}_{\mathbb{S}^{1}}: \mathrm{U}_{\mathbb{S}^{1}} \rightarrow \mathrm{U}
$$

such that $\sum_{\left(A: U_{\mathbb{S}^{1}}\right)} \mathcal{O}_{\mathbb{S}^{1}}(A) \times A$ is contractible

$$
\begin{aligned}
\mathbb{C P} & : \mathbb{N}_{-1} \rightarrow \mathrm{U} \\
\operatorname{cov}_{\mathbb{S}^{1}} & : \prod_{\left(n: \mathbb{N}_{-1}\right)} \mathbb{C P}^{n} \rightarrow \mathrm{U}_{\mathbb{S}^{1}} \\
\operatorname{orient}_{\mathbb{S}^{1}} & : \prod_{\left(n: \mathbb{N}_{-1}\right)} \prod_{\left(x: \mathbb{C P}^{n}\right)} \mathcal{O}_{\mathbb{S}^{1}}\left(\operatorname{cov}_{\mathbb{S}^{1}}^{n}(x)\right)
\end{aligned}
$$

- For each $n: \mathbb{N}$ there is an equivalence

$$
\mathbb{S}^{2 n+1} \simeq \sum_{(x: \mathbb{C P} n)} \operatorname{cov}_{\mathbb{S}^{1}}^{n}(x)
$$

In other words, $\mathbb{C} P^{n+1}$ is obtained by attaching an
$(2 n+2)$-cell to $\mathbb{C P}^{n}$.

- We obtain the long exact sequence
$\cdots \longrightarrow \pi_{k+1}\left(\mathbb{C P}^{n}\right) \longrightarrow \pi_{k}\left(\mathbb{S}^{1}\right) \longrightarrow \pi_{k}\left(\mathbb{S}^{2 n+1}\right) \longrightarrow \pi_{k}\left(\mathbb{C P}^{n}\right) \longrightarrow \cdots$
Since $\pi_{k}\left(\mathbb{S}^{1}\right)=0$ for $k \geq 2$, we get the isomorphisms

$$
\pi_{k}\left(\mathbb{S}^{2 n+1}\right)=\pi_{k}\left(\mathbb{C P}^{n}\right)
$$

for $k \geq 3$.

- The map

$$
\operatorname{cov}_{\mathbb{S}^{1}}^{\infty}: \mathbb{C P} \rightarrow \sum_{\left(A: U_{\mathbb{S}}\right)} \mathcal{O}_{\mathbb{S}^{1}}(A)
$$

is an equivalence.

Definition

A principal H -space structure on a type X with base point 1_{X}, consists of

1. a type family $\mathcal{O}_{X}: \mathrm{U}_{X} \rightarrow \mathrm{U}$ of orientations,
2. a canonical orientation $o_{X}: \mathcal{O}_{X}(X)$,
such that the type

$$
\sum_{\left(A: U_{X}\right)} \mathcal{O}_{X}(A) \times A
$$

is contractible.
The classifying type of a principal H -space X is defined to be

$$
\mathbf{B} X: \equiv \sum_{\left(A: U_{X}\right)} \mathcal{O}_{X}(A)
$$

This is a pointed connected type with loop space X.

The general projective space construction

$$
\begin{aligned}
& \mathrm{P}(X): \mathbb{N}_{-1} \rightarrow \mathrm{U} \\
& \quad \operatorname{cov} X: \prod_{\left(n: \mathbb{N}_{-1}\right)} \mathrm{P}(X)^{n} \rightarrow \mathrm{U}_{X} \\
& \text { orient } X: \prod_{(n: \mathbb{N}-1)} \prod_{\left(x: \mathrm{P}(X)^{n}\right)} \mathcal{O}_{X}\left(\operatorname{cov}_{X}^{n}(x)\right)
\end{aligned}
$$

- For each $n: \mathbb{N}$ there is an equivalence

$$
X^{*(n+1)} \simeq \sum_{\left(x: P(X)^{n}\right)} \operatorname{cov}_{X}^{n}(x)
$$

- We obtain the long exact sequence
$\cdots \rightarrow \pi_{k+1}\left(\mathrm{P}(X)^{n}\right) \rightarrow \pi_{k}(X) \rightarrow \pi_{k}\left(X^{*(n+1)}\right) \longrightarrow \pi_{k}\left(\mathrm{P}(X)^{n}\right) \rightarrow \cdots$
- The map

$$
\operatorname{cov}_{X}^{\infty}: \mathrm{P}(X)^{\infty} \rightarrow \mathbf{B} X
$$

is an equivalence.

Lemma

Any loop space can be given the structure of a principal H-space.
Proof (Definition of the type of orientations).
Define $P: X_{x_{0}} \rightarrow$ Type by $P(x): \equiv\left(x=x_{0}\right)$. Then we have

Now take

$$
\begin{aligned}
\mathcal{O}_{X}(A) & : \equiv \operatorname{fib}_{P}(A) \\
o_{X}(\Omega(X)) & : \equiv\left\langle x_{0}, \operatorname{refl}_{\Omega(X)}\right\rangle
\end{aligned}
$$

Proof of the contractibility property.
We have a commuting triangle

Therefore, the following are equivalent

- $\sum_{\left(A: U_{X}\right)} \mathcal{O}_{X}(A) \times A$ is contracitble
- $\sum_{\left(x: X_{x_{0}}\right)} P(x)$ is contractible

The latter is obvious.

Observation: By the projective space construction, $\mathbf{B} X$ is equivalent to a small type, for any principal H -space X.

Theorem

The map B from principal H-spaces to the type of (small) pointed connected types is an equivalence.

Theorem

The type BX classifies the oriented X-bundles over types:
For any $f: A \rightarrow B$ with the property that $\left\|\operatorname{fib}_{f}(y)=X\right\|$ for all
$y: B$, the following are equivalent:

- the type of all maps $P: B \rightarrow \mathbf{B} X$ for which the square

is a pullback square
- the type $\prod_{(y: B)} \mathcal{O}_{X}\left(\mathrm{fib}_{f}(y)\right)$ of X-orientations of f

Part II: The join construction

Overview

- The join construction
- The modified join construction
- The construction of the modality of \bigcirc-separated types
- Principal equivalence relations
- The type of principal equivalence relations on X is equivalent to the type of surjective maps out of X.

Theorem

If f is M-connected and g is N-connected for two types M and N, then $f * g$ is $(M * N)$-connected.

Corollary

If f is m-connected and g is n-connected for $m, n: \mathbb{N}$, then $f * g$ is ($m+n+2$)-connected.

Definition

For any $f: A \rightarrow X$, we define a sequence

The function $f^{* n}$ is called the n-th join-power of f.
Construction.
We take $A_{0}: \equiv \mathbf{0}$, with the unique map into X. Then we define
$A_{n+1}: \equiv A_{n} * x A$, and $f^{*(n+1)}: \equiv f^{* n} * f$.

For example:

- In the real projective case:
- $\mathbb{R P}^{n+1}=\mathbb{R P}^{n} *_{\mathbb{R} P \infty} \mathbf{1}$, and
- $\operatorname{cov}_{2}^{n}=\left(\operatorname{cov}_{2}^{0}\right)^{*(n+1)}$
- In the complex projective case:
- $\mathbb{C P}^{n+1}=\mathbb{C P}^{n} *_{\mathbb{C P} \infty} \mathbf{1}$, and
- $\operatorname{cov}_{\mathbb{S}^{1}}^{n}=\left(\operatorname{cov}_{\mathbb{S}^{1}}^{0}\right)^{*(n+1)}$
- In the general projective case:
- $\mathrm{P}(X)^{n+1}=\mathrm{P}(X)^{n} *_{\mathbf{B}} X \mathbf{1}$, and
- $\operatorname{cov}_{X}^{n}=\left(\operatorname{cov}_{X}^{0}\right)^{*(n+1)}$

Theorem
The sequential colimit $f^{* \infty}$ is an embedding, and has the universal property of the image inclusion.

Corollary

The sequential colimit of the type sequence

$$
\mathbf{0} \longrightarrow A \xrightarrow{\mathrm{inr}} A * A \xrightarrow{\mathrm{inr}} A *(A * A) \xrightarrow{\mathrm{inr}} \cdots
$$

has the universal property of the propositional truncation.

Definition

A type X, which may itself be large, is said to be locally small if for all $x, y: X$, there is a type $x=^{\prime} y: U$ and an equivalence of type

$$
(x=y) \simeq\left(x=^{\prime} y\right) .
$$

Examples of locally small types include:

- all types in U,
- the universe U,
- mere propositions of any size,
- for any A : U and any locally small type X, the type $A \rightarrow X$.

Theorem

Assumptions:

- U is a univalent universe closed under graph quotients,
- let X be a locally small type,
- let $f: A \rightarrow X$ with $A: U$,

Then we can construct a type $\mathrm{im}^{\prime}(f): \mathrm{U}$, a surjective map $q_{f}^{\prime}: A \rightarrow \operatorname{im}^{\prime}(f)$, and an embedding $i_{f}^{\prime}: \operatorname{im}^{\prime}(f) \rightarrow X$ such that the triangle

commutes, with the universal property of the image inclusion of f.

Applications of the modified join construction

Corollary

For any $\operatorname{Prop}_{\mathrm{U}}$-valued equivalence relation $R: A \rightarrow A \rightarrow \operatorname{Prop}_{\mathrm{U}}$ over a type $A: \mathrm{U}$, the type $A / R: \equiv \mathrm{im}^{\prime}(R): \mathrm{U}$ has the universal property of the quotient.

Corollary

The Rezk completion of any small precategory A can be constructed in any univalent universe that is closed under graph quotients, and the Rezk completion of any small precategory is again a small category.

Definition

A type $A: \mathrm{U}$ is said to be \bigcirc-separated if the type $a=b$ is
O-modal, for any $a, b: A$.

- Any $(n+1)$-truncated type is $\|-\|_{n}$-separated.

Definition

Let \bigcirc be a modality and let $A: \mathrm{U}$. We define the reflexive relation $I(A): A \rightarrow A \rightarrow U$ by

$$
I_{\bigcirc}(A)(a, b): \equiv \bigcirc(a=b)
$$

Theorem
For any type A and any a: A, the type

$$
\sum_{\left(P: \mathrm{im}_{t}^{\prime}\left(I_{\circ}(A)\right)\right)} P(a)
$$

is contractible.
It follows by the encode-decode method that

$$
\bigcirc(a=b) \simeq\left(I \circ(A)(a)=I_{\circ}(A)(b)\right)
$$

for any $a, b: A$.

Definition

Let O be any modality on U , and let $A: \mathrm{U}$. We define

$$
O^{+}(A): \equiv \operatorname{im}^{\prime}\left(I_{\circ}(A)\right)
$$

Furthermore, we define the modal unit $\eta_{\mathrm{O}^{+}}$by

$$
\eta_{\mathrm{O}^{+}}(A): \equiv q_{l_{O}(A)}^{\prime} .
$$

Theorem
The operation \bigcirc^{+}defined in this way is a modality.
Corollary
The n-truncations are definable operations in a univalent universe closed under graph quotients.

Definition

A principal equivalence relation on a type A consists of

- A binary relation $R: A \rightarrow(A \rightarrow \mathrm{U})$ with a proof $\rho: \prod_{(a: A)} R(a, a)$ of reflexivity,
- A type family

$$
\mathcal{O}_{R}: \operatorname{im}^{\prime}(R) \rightarrow \mathrm{U}
$$

of R-orientations on the predicates $P: A \rightarrow \mathrm{U}$ in the image of R, with a canonical R-orientation

$$
o_{R}: \prod_{(a: A)} \mathcal{O}_{R}(R(a))
$$

such that the type

$$
\sum_{\left(P: \mathrm{im}^{\prime}(R)\right)} \mathcal{O}_{R}(P) \times P(a)
$$

is contractible for every $a: A$.

- A principal equivalence relation on $\mathbf{1}$ is the same thing as a principal H-space.

Definition

Given a principal equivalence relation R on A, we define the quotient

$$
A / R: \equiv \sum_{\left(P: \mathrm{im}^{\prime}(R)\right)} \mathcal{O}_{R}(P)
$$

We define the quotient map $q_{R}: A \rightarrow A / R$ by

$$
q_{R}(a): \equiv\left\langle q_{R}^{\prime}(a), o_{R}(a)\right\rangle
$$

We obtain a map \mathcal{Q}_{A} from the type of principal equivalence relations on A to the type of surjective maps out of A.
Theorem
For each type A, the $\operatorname{map} \mathcal{Q}_{A}$ is an equivalence.

