Cubical Type Theory: a constructive interpretation of the univalence axiom

Anders Mörtberg

(jww C. Cohen, T. Coquand, and S. Huber)
Institute for Advanced Study, Princeton

June 26, 2016

Introduction

Goal: provide a computational justification for notions from Homotopy Type Theory and Univalent Foundations, in particular the univalence axiom and higher inductive types ${ }^{1}$

Specifically, design a type theory with good properties (normalization, decidability of type checking, etc.) where the univalence axiom computes and which has support for higher inductive types
${ }^{1}$ Slogan: "Making equality great again!"

Cubical Type Theory

An extension of dependent type theory which allows the user to directly argue about n-dimensional cubes (points, lines, squares, cubes etc.) representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory
Each type has a "cubical" structure - presheaf extension of type theory

Cubical Type Theory

Extends dependent type theory with:
(1) Path types
(2) Kan composition operations
(3) Glue types (univalence)
(1) Identity types
(3) Higher inductive types

Basic dependent type theory

$$
\begin{aligned}
\Gamma & :=() \mid \Gamma, x: A \\
t, u, A, B & ::= \\
& x|\lambda x: A . t| t u \mid(x: A) \rightarrow B \\
& (t, u)|t .1| t .2 \mid(x: A) \times B \\
& 0|\mathrm{~s} u| \text { natrec } t u \mid \text { nat }
\end{aligned}
$$

with η for functions and pairs

Path types

Path types provides a convenient syntax for reasoning about higher equality proofs

Contexts can contain variables in the interval:

$$
\frac{\Gamma \vdash}{\Gamma, i: \mathbb{I} \vdash}
$$

Formal representation of the interval, \mathbb{I} :

$$
r, s::=0|1| i|1-r| r \wedge s \mid r \vee s
$$

$i, j, k \ldots$ formal symbols/names representing directions/dimensions

Path types

$i: \mathbb{I} \vdash A$ corresponds to a line:

$$
A(i 0) \xrightarrow{A} A(i 1)
$$

$i: \mathbb{I}, j: \mathbb{I} \vdash A$ corresponds to a square:

$$
\begin{aligned}
& A(i 0)(j 1) \xrightarrow{A(j 1)} A(i 1)(j 1) \\
& A(i 0) \uparrow \quad A \quad{ } \uparrow \text { A(i1) } \\
& A(i 0)(j 0) \xrightarrow[A(j 0)]{ } A(i 1)(j 0)
\end{aligned}
$$

and so on...

Path types

$\frac{\Gamma \vdash A \quad \Gamma, i: \mathbb{I} \vdash t: A}{\Gamma \vdash\langle i\rangle t: \text { Path } A t(i 0) t(i 1)} \quad \frac{\Gamma \vdash t: \text { Path } A u_{0} u_{1} \quad \Gamma \vdash r: \mathbb{I}}{\Gamma \vdash t r: A}$

$$
\frac{\Gamma \vdash t: \text { Path } A u_{0} u_{1}}{\Gamma \vdash t 0=u_{0}: A}
$$

$$
\frac{\Gamma \vdash A \quad \Gamma, i: \mathbb{I} \vdash t: A}{\Gamma \vdash(\langle i\rangle t) r=t(i / r): A}
$$

Path types

Path abstraction, $\langle i\rangle t$, binds the name i in t

$$
t(i 0) \xrightarrow{t} t(i 1)
$$

$$
t(i 0) \xrightarrow{\langle i\rangle t} t(i 1)
$$

Path application, $t r$, applies a term t to an element $r: \mathbb{I}$

$$
b \xrightarrow{t(1-i)} a
$$

Path types: connections

Given p : Path $A a b$ we can build

Path types are great!

Function extensionality for path types can be proved as:

$$
\frac{\Gamma \vdash f, g:(x: A) \rightarrow B \quad \Gamma \vdash p:(x: A) \rightarrow \text { Path } B(f x)(g x)}{\Gamma \vdash\langle i\rangle \lambda x: A . p x i: \text { Path }((x: A) \rightarrow B) f g}
$$

Path types are great!

Given $f: A \rightarrow B$ and p : Path $A a b$ we can define:

$$
\operatorname{ap} f p=\langle i\rangle f(p i): \text { Path } B(f a)(f b)
$$

satisfying definitionally:

$$
\begin{array}{ll}
\text { ap } \operatorname{id} & p=p \\
\text { ap }(f \circ g) & p=\operatorname{ap} f(\operatorname{ap} g p)
\end{array}
$$

This way we get new ways for reasoning about equality: inline ap, funext, symmetry... with new definitional equalities

Path types are great!

We can also prove contractibility of singletons ${ }^{2}$:

$$
\frac{\Gamma \vdash p: \text { Path } A a b}{\Gamma \vdash\langle i\rangle(p i,\langle j\rangle p(i \wedge j)): \text { Path }((x: A) \times(\text { Path } A a x))\left(a, 1_{a}\right)(b, p)}
$$

But we cannot yet compose paths...
${ }^{2}$ or "Vacuum Cleaner Power Cord Principle"

Kan composition operations

We want to be able to compose paths:

$$
a \xrightarrow{p} b \quad b \xrightarrow{q} c
$$

We do this by computing the dashed line in:

In general this corresponds to computing the missing sides of n-dimensional cubes

Kan composition operations

Box principle: any open box has a lid

Cubical version of the Kan condition for simplicial sets:
"Any horn can be filled"

First formulated by Daniel Kan in "Abstract Homotopy I" (1955) for cubical complexes

Partial elements

To formulate this we need syntax for representing partially specified n-dimensional cubes

We add context restrictions Γ, φ where φ is a "face" formula
If $\Gamma \vdash A$ and $\Gamma, \varphi \vdash a: A$ then a is a partial element of A of extent φ
If $\Gamma, \varphi \vdash A$ then A is a partial type of extent φ

Examples of partial types

$i: \mathbb{I},(i=0) \vee(i=1) \vdash A$	$A(i 0) \bullet$	- $A(i 1)$
$i j: \mathbb{I},(i=0) \vee(i=1) \vee(j=0) \vdash A$	$A(i 0)(j 1)$	$A(i 1)(j 1)$
	$A(i 0) \uparrow$	$\uparrow_{A(i 1)}$
	$A(i 0)(j 0)$	$A(i 1)(j 0)$

The face lattice \mathbb{F} is a bounded distributive lattice on formal generators $(i=0)$ and $(i=1)$ with relation $(i=0) \wedge(i=1)=0_{\mathbb{F}}$

Partial elements

Any judgment valid in a context Γ is also valid in a restriction Γ, φ

$$
\frac{\Gamma \vdash A}{\Gamma, \varphi \vdash A}
$$

Contexts Γ are modeled by cubical sets

Restriction operation correspond to a cofibration:

$$
\Gamma, \varphi \rightarrow \Gamma
$$

Face lattice

An element $\Gamma, \varphi \vdash a: A$ is connected if we have $\Gamma \vdash b: A$ such that $\Gamma, \varphi \vdash a=b: A$

We write $\Gamma \vdash b: A[\varphi \mapsto a]$ and say that b witnesses that a is connected

This generalizes the notion of being path connected. Let φ be $(i=0) \vee(i=1)$, an element $b: A[\varphi \mapsto a]$ is a line:

$$
a(i 0) \xrightarrow{b} a(i 1)
$$

Box principle

We can now formulate the box principle in type theory:

$$
\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, \varphi, i: \mathbb{I} \vdash u: A \quad \Gamma \vdash a_{0}: A(i 0)[\varphi \mapsto u(i 0)]}{\Gamma \vdash \operatorname{comp}^{i} A[\varphi \mapsto u] a_{0}: A(i 1)[\varphi \mapsto u(i 1)]}
$$

u is a partial path connected at $i=0$ specifying the sides of the box a_{0} is the bottom of the box comp ${ }^{i}$ witnesses that u is connected at $i=1$

The equality judgments for the composition operation are defined by induction on A - this is the main part of the system

Kan composition: example

With composition we can justify transitivity of path types:
$\frac{\Gamma \vdash p: \text { Path } A a b \quad \Gamma \vdash q \text { : Path } A b c}{\Gamma \vdash\langle i\rangle \text { comp }^{j} A[(i=0) \mapsto a,(i=1) \mapsto q j](p i): \text { Path } A a c}$

Kan composition: transport

Composition for $\varphi=0_{\mathbb{F}}$ corresponds to transport:

$$
\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma \vdash a: A(i 0)}{\Gamma \vdash \text { transport }^{i} A a=\operatorname{comp}^{i} A[] a: A(i 1)}
$$

Together with contractibility of singletons we can prove path induction, that is, given $x: A$ and p : Path $A a x$ we get

$$
C\left(a, 1_{a}\right) \rightarrow C(x, p)
$$

Glue types

We extend the system with Glue types, these allow us to:

- Define composition for the universe
- Prove univalence

Composition for these types is the most complicated part of the system

Univalence?

What is needed in order to prove univalence?

Univalence?

What is needed in order to prove univalence?
For all types A and B we need to define a term:

$$
\text { ua : Equiv (Path } \cup A B)(\text { Equiv } A B)
$$

showing that the canonical map

$$
\text { pathToEquiv : Path } \cup A B \rightarrow \text { Equiv } A B
$$

is an equivalence

Univalence?

The following is an alternative characterization of univalence:

Univalence axiom

For any type $A: \mathrm{U}$ the type $(T: \mathrm{U}) \times$ Equiv $T A$ is contractible

This is a version of contractibility of singletons for equivalences. So if we can also transport along equivalences we get an induction principle for equivalences.

Univalence?

Lemma

The type isContr A is inhabited iff we have an operation:

$$
\frac{\Gamma, \varphi \vdash u: A}{\Gamma \vdash \operatorname{ext}[\varphi \mapsto u]: A[\varphi \mapsto u]}
$$

Univalence?

Lemma

The type isContr A is inhabited iff we have an operation:

$$
\frac{\Gamma, \varphi \vdash u: A}{\Gamma \vdash \operatorname{ext}[\varphi \mapsto u]: A[\varphi \mapsto u]}
$$

So to prove univalence it suffices to show that any partial element

$$
\Gamma, \varphi \vdash(T, e):(T: \mathrm{U}) \times \text { Equiv } T A
$$

extends to a total element

Example: unary and binary numbers

Let nat be unary natural numbers (0 and successor) and binnat be binary natural numbers (lists of 0 and 1). We have an equivalence

$$
e: \text { binnat } \rightarrow \text { nat }
$$

and we want to construct a path P with $P(i 0)=$ nat and $P(i 1)=$ binnat:
nat ---------> binnat

Example: unary and binary numbers

P should also store information about e, we achieve this by "glueing":

We write

$$
i: \mathbb{I} \vdash P=\text { Glue }[(i=0) \mapsto(\text { nat }, \text { id }),(i=1) \mapsto(\text { binnat }, e)] \text { nat }
$$

Glue: more generally

In the case when φ is $(i=0) \vee(i=1)$ the glueing operation can be illustrated as the dashed line in:

Glue: even more generally

We assume that we are given

- $\Gamma \vdash A$
- A partial type $\Gamma, \varphi \vdash T$
- An equivalence $\Gamma, \varphi \vdash e: T \rightarrow A$

Glue: even more generally

We assume that we are given

- $\Gamma \vdash A$
- A partial type $\Gamma, \varphi \vdash T$
- An equivalence $\Gamma, \varphi \vdash e: T \rightarrow A$

From this we define

- A total type $\Gamma \vdash$ Glue $[\varphi \mapsto(T, e)] A$
- A map $\Gamma \vdash$ unglue : Glue $[\varphi \mapsto(T, e)] A \rightarrow A$

Glue: even more generally

We assume that we are given

- $\Gamma \vdash A$
- A partial type $\Gamma, \varphi \vdash T$
- An equivalence $\Gamma, \varphi \vdash e: T \rightarrow A$

From this we define

- A total type $\Gamma \vdash$ Glue $[\varphi \mapsto(T, e)] A$
- A map $\Gamma \vdash$ unglue : Glue $[\varphi \mapsto(T, e)] A \rightarrow A$
such that Glue $[\varphi \mapsto(T, e)] A$ and unglue are extensions of T and e :

$$
\Gamma, \varphi \vdash T=\text { Glue }[\varphi \mapsto(T, e)] A \quad \Gamma, \varphi \vdash e=\text { unglue }: T \rightarrow A
$$

Glue: diagrammatically

Glue: diagrammatically

Rules for Glue

$$
\begin{array}{ll}
\Gamma \vdash A & \Gamma, \varphi \vdash T \quad \Gamma, \varphi \vdash e: \text { Equiv } T A \\
\hline & \Gamma \vdash \text { Glue }[\varphi \mapsto(T, e)] A
\end{array}
$$

$$
\begin{gathered}
\frac{\Gamma, \varphi \vdash e: \text { Equiv } T A \quad \Gamma, \varphi \vdash t: T \quad \Gamma \vdash a: A[\varphi \mapsto e t]}{\Gamma \vdash \text { glue }[\varphi \mapsto t] a: \text { Glue }[\varphi \mapsto(T, e)] A} \\
\frac{\Gamma \vdash b: \text { Glue }[\varphi \mapsto(T, e)] A}{\Gamma \vdash \text { unglue } b: A}
\end{gathered}
$$

together with equality judgments

Composition for Glue

Let $\Gamma, i: \mathbb{I} \vdash B=$ Glue $[\varphi \mapsto(T, e)] A$. Given

$$
\Gamma, \psi, i: \mathbb{I} \vdash b: B \quad \Gamma \vdash b_{0}: B(i 0)[\psi \mapsto b(i 0)]
$$

Composition for Glue

Let $\Gamma, i: \mathbb{I} \vdash B=$ Glue $[\varphi \mapsto(T, e)] A$. Given

$$
\Gamma, \psi, i: \mathbb{I} \vdash b: B \quad \Gamma \vdash b_{0}: B(i 0)[\psi \mapsto b(i 0)]
$$

The algorithm computes

$$
b_{1}=\operatorname{comp}^{i} B[\psi \mapsto b] b_{0}
$$

such that:

$$
\Gamma \vdash b_{1}: B(i 1)[\psi \mapsto b(i 1)] \quad \Gamma, \delta \vdash b_{1}: T(i 1)
$$

where δ is the part of φ that doesn't mention i

Composition for Glue

Let $\Gamma, i: \mathbb{I} \vdash B=$ Glue $[\varphi \mapsto(T, e)] A$. Given

$$
\Gamma, \psi, i: \mathbb{I} \vdash b: B \quad \Gamma \vdash b_{0}: B(i 0)[\psi \mapsto b(i 0)]
$$

The algorithm computes

$$
b_{1}=\operatorname{comp}^{i} B[\psi \mapsto b] b_{0}
$$

such that:

$$
\Gamma \vdash b_{1}: B(i 1)[\psi \mapsto b(i 1)] \quad \Gamma, \delta \vdash b_{1}: T(i 1)
$$

where δ is the part of φ that doesn't mention i
Composition for Glue is the most complicated part of the system

Composition for Glue in Nuprl

```
comp(Glue [phi \mapsto T,f] A) =
\H,sigma,psi,b,b0.
    let a = unglue(b) in
    let a0 = unglue(b0) in
    let a'1 = comp (cA)sigma [psi\mapsto a ] a0 in
    let t'1 = comp (cT)sigma [psi \mapstob] b0 in
    let g=(f.1)sigma in
    let w = pres g [psi \mapstob] b0 in
    let phi' = forall (phi)sigma in
    let phi1 = (phi)sigma[1] in
    let st = if phi' then t'1 else b[1] in
    let sw = if phi' then w else <> ((g b)[1])p in
    let cF = fiber-comp (H, phi1) (cT)sigma[1] (cA)sigma[1] g[1] a'1 in
    let z = equiv cF g[1] [phi'\vee psi\mapsto (st,sw)] a'1 in
    let t1 = z.1 in
    let alpha = z.2 in
    let x = if (phi1)p then (alpha)p @ q else a[1]p in
    let a1 = comp (cA)sigma[1]p [phi1 \vee psi\mapsto x] a'1 in
    glue [phi1 \mapsto t1] a1
```


Composition for the universe from Glue

Given $\Gamma \vdash A, \Gamma \vdash B$, and $\Gamma, i: \mathbb{I} \vdash E$, such that

$$
E(i 0)=A \quad E(i 1)=B
$$

Using transport we can construct ${ }^{3}$

$$
\text { equiv }^{i} E \text { : Equiv } A B
$$

Composition for the universe from Glue

Given $\Gamma \vdash A, \Gamma \vdash B$, and $\Gamma, i: \mathbb{I} \vdash E$, such that

$$
E(i 0)=A \quad E(i 1)=B
$$

Using transport we can construct ${ }^{3}$

$$
\text { equiv }^{i} E \text { : Equiv } A B
$$

Using this we can define the composition for the universe:

$$
\begin{aligned}
& \Gamma \vdash \operatorname{comp}^{i} \mathrm{U}[\varphi \mapsto E] A= \\
& \quad \text { Glue }\left[\varphi \mapsto\left(E(i 1), \text { equiv }^{i} E(i / 1-i)\right)\right] A: \mathrm{U}[\varphi \mapsto E(i 1)]
\end{aligned}
$$

Proof of univalence

Recall that in order to prove univalence it suffices to show that any partial element

$$
\Gamma, \varphi \vdash(T, e):(T: \mathrm{U}) \times \text { Equiv } T A
$$

extends to a total element

$$
\Gamma \vdash\left(T^{\prime}, e^{\prime}\right):\left(\left(T^{\prime}: \mathrm{U}\right) \times \text { Equiv } T^{\prime} A\right)[\varphi \mapsto(T, e)]
$$

Proof of univalence

Recall that in order to prove univalence it suffices to show that any partial element

$$
\Gamma, \varphi \vdash(T, e):(T: \mathrm{U}) \times \text { Equiv } T A
$$

extends to a total element

$$
\Gamma \vdash\left(T^{\prime}, e^{\prime}\right):\left(\left(T^{\prime}: \mathrm{U}\right) \times \text { Equiv } T^{\prime} A\right)[\varphi \mapsto(T, e)]
$$

This is exactly what Glue gives us!

$$
T^{\prime}=\text { Glue }[\varphi \mapsto(T, e)] A \quad e^{\prime}=(\text { unglue }, ?)
$$

For ? we need to prove that unglue is an equivalence

Proof of univalence

Proof of univalence

Proof of univalence

So we get:
Corollary
For any type A : U the type $(T: \mathrm{U}) \times$ Equiv $T A$ is contractible

From this we obtain this general statement of the univalence axiom:
Corollary
For any term

$$
t:(A B: \mathrm{U}) \rightarrow \text { Path } \cup A B \rightarrow \text { Equiv } A B
$$

the map $t A B$: Path $\cup A B \rightarrow$ Equiv $A B$ is an equivalence

Identity types

Path types satisfy many new definitional equalities, but the computation rule for path elimination does not hold definitionally

Identity types

Path types satisfy many new definitional equalities, but the computation rule for path elimination does not hold definitionally

This is because the computation rule

$$
\operatorname{transport}^{i} \quad A a=a
$$

if A is independent of i doesn't hold definitionally

Identity types

Path types satisfy many new definitional equalities, but the computation rule for path elimination does not hold definitionally

This is because the computation rule

$$
\operatorname{transport}^{i} \quad A a=a
$$

if A is independent of i doesn't hold definitionally
However we can define (based on ideas of Andrew Swan) a new type, equivalent to Path, which satisfies this

Identity types

We define a type Id $A a_{0} a_{1}$ with the introduction rule

$$
\frac{\Gamma \vdash \omega: \text { Path } A a_{0} a_{1}\left[\varphi \mapsto\langle i\rangle a_{0}\right]}{\Gamma \vdash(\omega, \varphi): \operatorname{Id} A a_{0} a_{1}}
$$

and $\mathrm{r}(a)=\left(\langle j\rangle a, 1_{\mathbb{F}}\right): \operatorname{ld} A a a$
The intuition is that φ specifies where ω is degenerate

Identity types

Given $\Gamma \vdash \alpha=(\omega, \varphi)$: Id A a x we define

$$
\Gamma, i: \mathbb{I} \vdash \alpha^{*}(i)=(\langle j\rangle \omega(i \wedge j), \varphi \vee(i=0)): \operatorname{ld} A a(\alpha i)
$$

Using this we define

$$
\frac{\Gamma, x: A, \alpha: \operatorname{ld} A a x \vdash C \quad \Gamma \vdash \beta: \operatorname{ld} A a b \quad \Gamma \vdash d: C(a, \mathrm{r}(a))}{\Gamma \vdash J C b \beta d=\operatorname{comp}^{i} C\left(\omega i, \beta^{*}(i)\right)[\varphi \mapsto d] d: C(b, \beta)}
$$

so that $J C a \mathrm{r}(a) d=d$ definitionally

Identity types: univalence

We can also define composition for Id-types and prove that Id $A a b$ is (Path)-equivalent to Path $A a b$, so we get

$$
(\operatorname{ld} \cup A B) \simeq(\text { Path } \cup A B) \simeq(A \simeq B)
$$

But \simeq is expressed using Path

Identity types: univalence

We can also define composition for Id-types and prove that Id $A a b$ is (Path)-equivalent to Path $A a b$, so we get

$$
(\operatorname{ld} \cup A B) \simeq(\text { Path } \cup A B) \simeq(A \simeq B)
$$

But \simeq is expressed using Path
But as Path and Id are equivalent we get
X Path-contractible $\Leftrightarrow X$ Id-contractible

Identity types: univalence

We can also define composition for Id-types and prove that Id $A a b$ is (Path)-equivalent to Path $A a b$, so we get

$$
(\operatorname{ld} \cup A B) \simeq(\text { Path } \cup A B) \simeq(A \simeq B)
$$

But \simeq is expressed using Path
But as Path and Id are equivalent we get

$$
X \text { Path-contractible } \Leftrightarrow X \text { Id-contractible }
$$

So CTT+Id-types is an extension of MLTT+UA

cubicaltt

We have a prototype implementation of a proof assistant based on cubical type theory written in Haskell

We have formalized the proof of univalence in the system:

```
thmUniv ( \(t:(A X: U) \rightarrow I d U X A \rightarrow\) equiv \(X A)(A: U):\)
    \((X: U) \rightarrow\) isEquiv (Id \(U X A\) ) (equiv \(X A)(t A X)=\)
        equivFunFib \(U(\lambda(X: U) \rightarrow I d \cup X A)(\lambda(X: U) \rightarrow\) equiv \(X A)\)
        ( \(\mathrm{t} A\) ) (lemSinglContr' U A) (lem1 A)
univalence ( \(\mathrm{A}: \mathrm{U}\) ) : isEquiv (Id UXA) (equiv XA) (transEquiv \(\mathrm{A} X)=\)
    thmUniv transEquiv A X
corrUniv (AB:U): equiv (Id U A B) (equiv AB) \(=\)
    (transEquiv B A,univalence B A)
```


Normal form of univalence

We can compute and typecheck the normal form of thmUniv:
module nthmUniv where
import univalence

$$
\begin{aligned}
& \text { nthmUniv : }(\mathrm{t}:(\mathrm{A} X: \mathrm{U}) \rightarrow \text { Id } U \mathrm{XA} \rightarrow \text { equiv } \mathrm{X} A)(\mathrm{A}: \mathrm{U}) \\
& (X: U) \rightarrow \text { isEquiv (Id U X A) (equiv } X A)(t A X)=\backslash(t:(A X: U) \\
& \rightarrow(\operatorname{IdP}(<!0>U) X A) \rightarrow(\operatorname{Sigma}(X \rightarrow A)(\lambda(f: X \rightarrow A) \rightarrow(y: A) \\
& \rightarrow \text { Sigma (Sigma } X(\lambda(x: X) \rightarrow \text { IdP }(<!0>A) \text { y }(f x)))(\lambda(x: S i g m a x \\
& (\lambda(x: X) \rightarrow \operatorname{IdP}(<!0>A) y(f x))) \rightarrow(y 0: \operatorname{Sigma} X(\lambda(x 0: X) \rightarrow \\
& \operatorname{IdP}(<!0>A) \text { y }(f \times 0))) \rightarrow \operatorname{IdP}(<!0>\operatorname{Sigma} X(\lambda(x 0: X) \rightarrow \operatorname{IdP}(<!0> \\
& \text { A) } y(f \times 0))) \times y 0)))) \rightarrow \lambda(A \times: U) \rightarrow \ldots
\end{aligned}
$$

Normal form of univalence

We can compute and typecheck the normal form of thmUniv:

```
module nthmUniv where
import univalence
nthmUniv : (t : (A X : U) }->\mathrm{ Id U X A }->\mathrm{ equiv X A) (A:U)
    (X:U) }->\mathrm{ isEquiv (Id U X A) (equiv X A) (t A X) = \(t:(A X:U)
    ->(IdP (<!0>U) X A) }->(\mathrm{ Sigma }(X->A)(\lambda(f:X->A)->(y:A
    Sigma (Sigma X ( }\lambda(\textrm{x}:\textrm{X})->\textrm{IdP}(<!0>A) y (f x))) ( ( (x:Sigma X
    (\lambda(x:X) -> IdP (<!0>A) y (fx))) -> (y0:Sigma X ( }\lambda(\textrm{x}0:\textrm{X})
    IdP (<!0> A) y (f x0))) -> IdP (<!0> Sigma X ( }\lambda(\textrm{x}0:\textrm{X})->\operatorname{IdP (<!0>
    A) y (f x0))) x y0)))) -> (A A x:U) }->
```

It takes 8 min to compute the normal form, it is about 12 MB and it takes 50 hours to typecheck it!

Computing with univalence

In practice this doesn't seem to be too much of a problem. We have performed multiple experiments:

- Voevodsky's impredicative set quotients and definition of Z as a quotient of nat * nat
- Fundamental group of the circle (compute winding numbers)
- Z as a HIT
- $\mathbb{T} \simeq \mathbb{S}^{1} \times \mathbb{S}^{1}$ (by Dan Licata, 60 lines of code)
- ...

Higher inductive types

In the paper we consider two higher inductive types:

- Spheres
- Propositional truncation

In the implementation we have a general schema for defining HITs ${ }^{4}$

[^0]
Integers as a higher inductive types

```
data int = pos (n : nat)
    | neg (n : nat)
    | zeroP <i> [ (i = 0) -> pos zero
    , (i = 1) -> neg zero ]
sucInt : int -> int = split
    pos n -> pos (suc n)
    neg n -> sucNat n
        where sucNat : nat -> int = split
        zero -> pos one
        suc n -> neg n
    zeroP @ i -> pos one
```


Torus as a higher inductive types (due to Dan Licata)

```
data Torus = ptT
    | pathOneT <i> [ (i=0) -> ptT, (i=1) -> ptT ]
    | pathTwoT <i> [ (i=0) -> ptT, (i=1) -> ptT ]
    | squareT <i j> [ (i=0) -> pathOneT @ j
                            , (i=1) -> pathOneT @ j
                            , (j=0) -> pathTwoT @ i
                            , (j=1) -> pathTwoT @ i ]
torus2circles : Torus -> and S1 S1 = split
    ptT -> (base,base)
    pathOneT @ j -> (loop @ j, base)
    pathTwoT @ i -> (base, loop @ i)
    squareT @ i j -> (loop @ j, loop @ i)
```


Current and future work

- Normalization: Any term of type nat reduces to a numeral (S. Huber is working on it now)
- Formalize correctness of the model (wip with Mark Bickford in Nuprl)
- General formulation and semantics of higher inductive types (we have an experimental implementation)

> https://github.com/mortberg/cubicaltt/

Thank you for your attention!

Figure: Cat filling operation

[^0]: ${ }^{4}$ Warning: composition for recursive HITs is currently incorrect in the implementation, but correct in paper

