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Homotopy type theory (HoTT) offers a constructive way of working with ∞-groupoids. When we
use it as a foundation for mathematics, it yields the useful principle ‘isomorphism implies equality.’
When the canonicity problem of HoTT is solved, it would allow programmers to identify equivalent
types A and B, then apply a functor F to them, and then turn the identification FA =U FB

again into an automatically defined equivalence.
A directed formulation of HoTT, in which we do not only have isomorphisms a =A b, but also

unidirectional morphisms a  A b, extends the aforementioned applications. We would obtain a
constructive way of working with higher categories. When we use it as a foundation for mathemat-
ics, it might yield principles as ‘a group morphism from G to H implies a morphism G Grp H.’
When the canonicity problem is solved, it would allow programmers to turn a function A → B

into a morphism, then apply a functor F , and then turn the morphism FA U FB again into an
automatically defined function.

In [2DTT], D. Licata and R. Harper give a formulation for directed type theory in two dimen-
sions, however at the cost of abolishing the identity type family. I propose a few modifications to
the formal type system of HoTT, most importantly the introduction of 2 additional kinds of vari-
ance for functions, to obtain an infinite dimensional directed type theory which has both identity
and morphism types. Invariant functions discard morphisms and allow us to keep the identity
type. Isovariant functions map morphisms to paths; the dependent ones allow us to reason suc-
cinctly about commuting diagrams. Both morphism and identity type have an inductive definition
and they differ only in their variance: whereas the identity type is invariant in its endpoints, the
morphism type is contravariant in the source and covariant in the target. Interpreting the variance
in source and target as two extra constructors, we arrive at the proper induction principle.
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Eliminating out of Truncations
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If we want to perform a construction or show a result which does not hold
for types with non-trivial higher equality structure, we often choose to only
work with n-types, for some suitable number n ≥ −1. To give examples: for
algebraic structures such as groups, we may require the type of elements to be
a 0-type, and for categories, the type of objects has to be a 1-type, while one
might want to do some form of “traditional logic” with (−1)-types. This way,
we can avoid coherence problems that could potentially occur on higher levels
that we may not even be interested in. The truncation operator ‖−‖

n
, which

transforms any type A into an n-type ‖A‖
n
, can be viewed and implemented

as a higher inductive type, but is certainly somewhat special. It is a modality
(an idempotent monad in some appropriate sense), and it allows us to work
completely in the “subuniverse” of n-types. This becomes difficult if, at some
point, we need to leave this “subuniverse”. The universal property of ‖−‖

n
says

that functions (‖A‖
n
→ B) correspond to functions (A → B), but only if B

happens to be an n-type.
It may therefore be interesting to derive a more powerful “universal prop-

erty” for ‖−‖
n
which is not restricted to n-types B, but works for any m-type

B. Here, m is a fixed number that may be anything greater than n, including
∞, in which case we do not put any restriction on B. Intuitively, what we need
to do is to require the functions (A → B) to satisfy certain coherences if we
want them to correspond to functions (‖A‖

n
→ B).

I will present an outline of my solution for the propositional truncation
(arXiv:1411.2682), i.e. n ≡ −1, where (in the currently considered type theory)
m is any number, but has to be fixed externally. This needs some specific “semi-
simplicial type”. I use the construction to illustrate that we might want a type
theory that allows the construction of “Reedy-fibrant diagrams” and its limits
(sometimes called “infinitary type theory”). Joint work with Paolo Capriotti
and Andrea Vezzosi has further yielded a solution for the case m ≡ n + 1 (i.e.
n is no longer required to be −1). I will try to explain why the remaining cases
(general n > −1, arbitrary m greater than n) seem to be harder than the solved
ones. Intuitively, this is because they combine two different kinds of coherence
problems.

http://arxiv.org/abs/1411.2682
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Abstract

Sheafification is a popular tool in topos theory which allows to extend
the internal logic of a topos with new principles. One of its most famous
applications is the possibility to transform a topos into a boolean topos
using the dense topology, which corresponds in essence to Gödel’s dou-
ble negation translation. A computer-checked construction of Lawvere-
Tierney sheafification in homotopy type theory would allow in particular
to give a meaning to the (propositional) law of excluded middle inside ho-
motopy type theory, being compatible with the full type-theoretic axiom
of choice. We give here some key points of this construction.

Sheafification [MM92] is a very powerful geometric construction that has
been initially stated in topology and has quickly been lifted to mathematical
logic. In the field of topos theory, it provides a way to construct new toposes
from already existing ones, allowing logical principles—that can not be proved
to be true or false in the old topos—to be valid (or invalid) in the new topos.
A famous application has been developed by Cohen [CD66] to prove that the
continuum hypothesis is independent of the usual axioms of Zermelo-Frænkel
set theory, even in presence of the axiom of choice (AC). The initial work of
Cohen uses forcing but can be rephrased in terms of sheafification [MM92].

As the notion of higher toposes appears to correspond very closely to homo-
topy type theory, higher topos theory [Lur09] provides a new hope that tackling
the problem of extending the power of homotopy type theory using sheafification
is actually possible.

Lawvere-Tierney Sheafification in Topos Theory

Lawvere-Tierney sheafification in a topos E is based on an abstract point of view
on the topology to be considered, being simply defined by an endomorphism on
the classifying object Ω of E

j : Ω → Ω

that is required to preserve true (j true = true), to be idempotent (j ◦ j = j)
and compatible with products (j ◦∧ = ∧◦ (j, j)). A typical example is given by
double negation.
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Every Lawvere-Tierney topology j induces a closure operator A 7→ A on
subobjects. If we see a subobject A of E as a characteristic function χA, the
closure A corresponds to the subobject of E whose characteristic function is

χA = j ◦ χA.

A subobject A of E is said to be dense when A = E.
The idea is then to define sheaves in E as objects of E for which it is impossible

to make a distinction between objects and their dense subobjects. This idea
is formalized by saying that for every dense subobject A of E, the following
canonical map is an isomorphism

HomE(E,F ) → HomE(A,F ). (1)

One can show that ShE , the full sub-category of E given by sheaves, is again a
topos, with classifying object

Ωj = {P ∈ E | jP = P}.

Thus, in case of the double negation, the resulting topos is boolean and admits
classical reasoning.

Furthermore, one can define a left adjoint to the inclusion, the sheafification
functor

aj : E → ShE

which exhibits ShE as a reflective subcategory of E (which is a particular case
of localization). This means that logical principles valid in E are still valid in
ShE .

Overview of the Result

To extend Lawvere-Tierney sheafification to homotopy type theory, the first
thing to understand is that the construction can not be done in one single step
anymore. It must rather be performed by induction on the level of homotopy
types. More precisely, the first layer of sheafification is defined for Type0, given a
topology on Type−1. This part corresponds to sheafification for toposes. Then,
assuming that the sheafification has been constructed up to level n, one can
define the sheafification for Typen+1.

This inductive step requires to formalize the notion of left-exact reflective
subuniverse, which corresponds to a stratified version of left-exact modality
introduced in [Uni13, Chapter 7]. A Lawvere-Tierney topology can thus be seen
as a left-exact modality on Type−1 and sheafification as an inductive process
that extends it as a left-exact modality on Typen for any n.

Two steps keep us from finishing the construction:

• Sheafification in topos theory uses the property that epimorphisms are
coequalizers of their kernel pairs. The translation of this in homotopy
type theory is “Effective epimorphisms are exactly the surjections”. The
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difficulty here is to give a meaning to “effective epimorphism”, and thus
to Čech nerve and (homotopy) colimits. When it is done, we hope that it
will be easy to prove the needed fact.

• From a technical point of view, the handling of universes by Coq is at
the moment not powerfull enough to allow us to formalize completely the
construction. More precisely, sheafification relies on a function Typen →
Typen+1 increasing strictly universe levels, which we want to take the
fixpoint. Thus, we need to allow universe levels to be non-finite ordinals.
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A Reedy category generalizes a kind of structure over which various common
presheaves can be built, such as semi-simplicial sets, simplicial sets, cubical sets
or even, though of much simpler structure, globular sets. Morphisms of a Reedy
category are split into upwards and downwards morphisms and any arbitrary
morphism of a Reedy category factors uniquely as the composition of a down-
wards and of an upwards morphism, in the same way as any morphism in, say,
the simplex category ∆ or in the cube category factors through a coface map
and a codegeneracy map.

In a directed Reedy category, only upwards morphisms are present. The typ-
ical example of this is the subcategory ∆i of injective morphisms of ∆ from
which semi-simplicial sets (also known as ∆-sets) are defined as a presheaf. In
this context, Awodey and LeFanu Lumsdaine sketched the idea of an alterna-
tive inductively-defined dependently-typed construction of a semi-simplicial set.
When formalized in the context of homotopy type theory, this even leads to
a notion of semi-simplicial types, where types may have non-trivial homotopy
levels, on the contrary of sets.

In a previous work, we proposed a precise definition of Awodey and LeFanu
Lumsdaine’s sketch of what a dependently-typed presentation of semi-simplicial
types could look like within a type theory equipped with (at least) a strict equal-
ity. In the current work, we extend this construction to an inductively-defined
dependently-typed construction of a presheaf over an arbitrary Reedy category
of countable cardinal. In particular, this provides with an original construction
of simplicial sets as well as cubical sets where face maps and degeneracy maps
are intrinsically part of the structure of sets rather than axiomatized aside.

Unfortunately, the construction is pretty involved and at the current stage,
only the inductively-defined dependently-typed definition of a “Reedy type” is
given. Showing the correspondence with the presheaf definition, as well as defin-
ing morphisms, composition, products or exponentials would require another
significant amount of complexity. Also, while our construction of semi-simplicial
types was formally checked in Coq, we did not machine-checked our definition
of Reedy types.

The standard definition of simplicial sets as families of sets equipped with
face and degeneracy maps satisfying some appropriate equational theory does not
ensure the decidability for a simplex of being degenerate or not. Contrastingly,
our approach is constructive, in the sense that whether a simplex is degenerate



or not is hard-wired in the definition and hence decidable. In particular, the
correspondence with the presheaf definition holds only classically. Despite the
degeneracies are hard-wired in the construction, we however foresee that building
the exponential will still require classical reasoning in the general case.
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Indexed W-types model inductive families, just as ordinary W-types model inductive types.
In extensional type theory, indexed W-types were shown constructible from ordinary ones by
Gambino and Hyland [3] using equivalent categorical terms: they construct initial algebras for
dependent polynomial functors from non-dependent ones in the setting of a locally cartesian-
closed category. In intensional type theory with function extensionality, an analogous result
should hold when considering the corresponding homotopified notion [1] of (indexed) W-types.

Though tedious, this is provable using seemingly ad-hoc term-level manipulations following
essentially the extensional ideas (we are aware of an account by Lumsdaine in terms of Coq
code starting from strict ordinary W-types and using large elimination). Instead, we want
to highlight a conceptually clean alternative suggested by the rolling rule [2] and cartesianess
of the monad associated to any morphism via the codomain bifibration. This illuminates a
deeper categorical nature of the extensional construction [3] and makes it amendable in a
straightforward fashion to higher categorical generalization in terms of locally cartesian-closed
quasi-categories (completed theorem).

Recent work by Szumi lo [4] and Kapulkin (to be published) exhibits the syntax of intensional
type theory with function extensionality as a locally cartesian-closed quasi-category. After
verifying quasi-categorical notions like initial objects in algebra quasi-categories agree with
their counterparts in the internal language of type theory, the desired result should follow
(work in progress).

This approach leads us to leave the realm of type-theoretic syntax by working in the semantic
domain of quasi-categories. Of course, it is not possible to formalize internally the infinitely
many levels of coherence e.g. of the notion of algebra morphisms with their compositional
structure. Nor is it needed: since contractibility is expressible internally, we can define notions
such as homotopy initial algebras in an ad hoc way by referencing only the first few levels [1].
Only finitely many levels of coherence will be needed at any point. However, several steps in
the proof each require the need to explicate an additional layer of coherence, making a direct
translation to an internal proof infeasible, even though we conjecture it should be constructively
generatable from the quasi-categorical proof.

This furthermore suggests the appropriate level of formalization of the above proof would be
in terms of some directed homotopy type theory allowing one to reason about objects behaving
like (ω, 1)-categories.

Disclaimer: A version of this abstract has been accepted for presentation at TYPES 2015.
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The papers [1, 2] consider the factorization of constant functions f : X → A

through the propositional truncation ‖X‖ of their domain, relating it to a number of
phenomena, including a generalized version of Hedberg’s Theorem that charaterizes
those types which are sets. In particular, the above work considers general condi-
tions on X that allow one to get ‖X‖ → X, thus obtaining the explicit existence of
an inhabitant of X from its anonymous existence.

For the purposes of this work, a function f : X → A is constant if any two of
its values are equal:

constant f = Π(x, y : X).fx = fy.

This is not a proposition in general, and one may refer to a point of this type as
a modulus of constancy of f . The above papers also give a number of sufficient
conditions for the factorization to be possible, and conjecture that the factorization
is not possible in general. In particular, if the type A is a set, then the factorization
is always possible, and hence one needs to go beyond sets to settle the question.

Mike Shulman (personal communication) exhibited a family of constant func-
tions for which a uniform factorization contradicts the univalence axiom, thus prov-
ing the conjecture (unpublished). Not all constant functions f : X → A factor
through ‖X‖.

Here we look at the problem from a more abstract, geometrical point of view.
Moreover, we add a positive factorization result, originally conceived as an attempt
to get a negative result, which here is offered as an illustration of the difficulty of
the problem solved by Shulman.

Given any type X, we define a universal constant map X → S(X) by higher-
induction. We have the constructors

β : X → S(X),

ℓ : Π(x, y : X).β(x) = β(y).

When X is the terminal type 1, we have that S(X) is the circle S1:

S(1) = S1.

The universal property of S(−) is an equivalence

(S(X) → A) ≃ Σ(f : X → A). constant f,

which generalizes the universal property of the circle expressed as

(S1 → A) ≃ Σ(a : A).a = a.
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To say that a function f : X → A is constant is equivalent to saying that it
factors through S(X). The type S(X) is connected, the unit β : X → S(X) of the
universal property of S(X) is a constant surjection, and, because the universal map
X → ‖X‖ into a proposition is constant, we always have a map S(X) → ‖X‖. We
have a map ‖X‖ → S(X) for all X if and only if all constant functions f : X → A

factor through ‖X‖. Thus the general factorization problem is equivalent to the
question of whether we have a function

Π(X : U).‖X‖ → S(X).

It seemed to us that perhaps the simplest potential counter-example could be

X = (s = base) for s : S1,

because then ‖X‖ = 1 as is well known and proved in the HoTT book, and so the
question specialized to this particular case amounts to

Π(s : S1).S(s = base).

It seemed preposterous to us to always be able to give an element of the type
S(s = base) without being able to give an element of the type (s = base) in general.
However, this is how things turn out be, and what we will present in the talk.

A consequence of this is that if we are given a point s : S1 and a constant
function f : s = base → A into a type A, then we can find a point of A which is
the constant value of f , even in the absence of the knowledge of a point of the path
space (s = base).
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