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General Question

What is |A|, - B 7

| mainly talk about:
Whatis |A| > B ?

(where || is the propositional truncation, i.e. n=-1.)



Prop. Truncation |—|

What is a function g: |A| -~ B
A function f : A - B that cannot look at its input?
weonstr := N, .4 f(a1) = f(a2).

Theorem
(JA] = B) =~ X(f:A- B).wconstr

if B is a O-type (h-set).

?




First coherence condition

weonsts := My, oa F(a31) = f(a2)
Coherence condition on ¢ : wconsts
cohf e = Myeama c(at, a?) - c(a’ a®) = c(at, a°).

Theorem
(JA] = B) =~ X(f:A- B).%X(c:wconstr).cohs,

if Bis a 1-type.




Proof of (JA = B) =~ X (f:A—- B).%X(c:wconstf).cohs,

Assume a, : A is given.
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Proof of (JA = B) =~ X (f:A—- B).%X(c:wconstf).cohs,

Assume a, : A is given.
> (fi:B).
Z(f:A%B).Z(Cliﬂa:A f(a): fl)
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Proof of (JA = B) =~ X (f:A—- B).%X(c:wconstf).cohs,

Assume a, : A is given.
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Assuming a, : A, we have constructed an equivalence
g:B - ¥ (f:A—- B).¥X(c:wconstf).cohs..

By examining the steps, we see that the function is
g(b) = (A _.b, X, refly, X, refleq,).

It does not depend on a,!

A — isequiv(g)
thus  |A| — isequiv(g).

Therefore:

Al - (B =~ £(f:A- B).X(c:wconsts).cohs)
(JA| = B) =~ Z(f:A-> B).%X(c:wconstr).cohs,



This strategy is so frugal that it can be done at any level,
with minimalistic assumptions on the theory: we need
1,>, 1M, Id with function extensionality, |||

Main result: In a type theory with Reedy w®P-limits (infinite
Y -types), the type |A| - B corresponds to the type of
coherently constant functions A - B.

Setting: type-theoretic fibration category (Shulman,
Univalence for inverse diagrams and homotopy canonicity)

Main part of this talk: a very, very rough outline of the
proof.



Coherently constant functions are morphisms between
semi-simplicial types (AS® — Type)

> (bl, b2, b3 : B) .
Z(p12 : bl = bz) .

COhf'C
AxAxA -------------- ’ Z(p233b2:b3).
Y (p13: by = b3).
P12 - P23 = P13
C : wconstr m
AxA e > Z(bl,ble).blsz
I f I
A oo ’ B
TA: AP — Type EB: A% — Type

[0]-coskeleton of A Fibrant replacement of B



On the Equality Semi-Simplicial Type B

&B[n) Is the type of n-dimensional tetrahedra, built of the
identity type (defined as a Shulman-kind diagram over the
inverse category A%”). We can also define the type of horns.

Important Kan-filling lemma: The projection from full
tetrahedra to the type of (k-)horns is an equivalence.

(Side remark: This is a strong “Kan filling” property and
gives a “simplicial” version of Lumsdaine's / van den
Berg-Garner's “globular” result that types are weak
w-groupoids.)



Nat. trans. between 7A and B (extended index cat. A%)

dl : I_IalaQ:A C(alv a2) : Cl(az) = Cl(al)

d : cohys .

dr : Maa c(a,, @) c1(a) =

Kan-filling lemma = ...extensive calculation ...= Any two
> -components connected by a “diagonal arrow” form a
contractible pair!



Nat. trans. between 7A and B (extended index cat. A%)

d: COhfyC
dr : Man c(a,,a)-c1(a) =

%W
(// /
C : wconstr

a:MNaaf(a)=f c:f(ay)="h
s

Kan-filling lemma = ...extensive calculation ...= Any two
> -components connected by a “diagonal arrow” form a
contractible pair!




Rest as in the special case:
e Assuming a, : A, we have shown that the can. map

B — nat. trans. from TA to B

IS an equivalence.
e This map is independent of a,.
e Thus, |A| implies that this map is an equivalence.
e Therefore:
Theorem
(JA] = B) =~ nat. trans. from 7A to EB

in any theory with 1, %, 1, 1d, fun.ext., ||,
Reedy w°P-limits.

If you don't like Reedy w-limits, you still get all the cases
where B is n-truncated.



Higher Truncations
What is |A|, - B 7

Conjecture: Natural Transformations from the
[n + 1]-coskeleton of &A to &B.

This talk: Case n = -1.

Paolo Capriotti, N.K., Andrea Vezzosi: Proof for the case
that B is (n+ 1)-truncated (to appear at CSL'15).

Caveat, wild speculation following.

Case n = 0 can be used to solve the open problem
“univalent type theory eats itself”

with n univalent universes, but without HITs; trick:
interpret U; as universe of j-types.



