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General Question

What is ∥A∥n → B ?

I mainly talk about:

What is ∥A∥ → B ?

(where ∥−∥ is the propositional truncation, i.e. n ≡ −1.)



Prop. Truncation ∥−∥

What is a function g ∶ ∥A∥ → B ?

A function f ∶ A → B that cannot look at its input?

wconstf ∶≡ Πa1,a2∶A f (a1) = f (a2).

Theorem
(∥A∥ → B) ≃ Σ (f ∶ A → B) .wconstf

if B is a 0-type (h-set).



First coherence condition

wconstf ∶≡ Πa1,a2∶A f (a1) = f (a2)

Coherence condition on c ∶ wconstf

cohf ,c ∶≡ Πa1a2a3∶A c(a1, a2) ⋅ c(a2, a3) = c(a1, a3).

Theorem
(∥A∥ → B) ≃ Σ (f ∶ A → B) .Σ (c ∶ wconstf ) . cohf ,c

if B is a 1-type.



Proof of (∥A∥ → B) ≃ Σ (f ∶ A → B) .Σ (c ∶ wconstf ) . cohf ,c

Assume a0 ∶ A is given.
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Assuming a0 ∶ A, we have constructed an equivalence

g ∶ B → Σ (f ∶ A → B) .Σ (c ∶ wconstf ) . cohf ,c .

By examining the steps, we see that the function is

g(b) ≡ (λ_.b , λ_,_.reflb , λ_,_,_.reflreflb).

It does not depend on a0!

A → isequiv(g)
thus ∥A∥ → isequiv(g).

Therefore:

∥A∥ → (B ≃ Σ (f ∶ A → B) .Σ (c ∶ wconstf ) . cohf ,c)
(∥A∥ → B) ≃ Σ (f ∶ A → B) .Σ (c ∶ wconstf ) . cohf ,c



This strategy is so frugal that it can be done at any level,
with minimalistic assumptions on the theory: we need
1,Σ,Π, Id with function extensionality, ∥−∥.

Main result: In a type theory with Reedy ωop-limits (infinite
Σ-types), the type ∥A∥ → B corresponds to the type of

coherently constant functions A → B.

Setting: type-theoretic fibration category (Shulman,
Univalence for inverse diagrams and homotopy canonicity)

Main part of this talk: a very, very rough outline of the
proof.



Coherently constant functions are morphisms between
semi-simplicial types (∆op+ → Type)

A

A × A

A × A × A

B

Σ (b1, b2 ∶ B) . b1 = b2

Σ (b1, b2, b3 ∶ B) .
Σ (p12 ∶ b1 = b2) .
Σ (p23 ∶ b2 = b3) .
Σ (p13 ∶ b1 = b3) .
p12 ⋅ p23 = p13

f

c ∶ wconstf

cohf ,c

TA ∶ ∆op+ → Type

[0]-coskeleton of A

EB ∶ ∆op+ → Type

Fibrant replacement of B



On the Equality Semi-Simplicial Type EB

EB[n] is the type of n-dimensional tetrahedra, built of the
identity type (defined as a Shulman-kind diagram over the
inverse category ∆op+ ). We can also define the type of horns.

Important Kan-filling lemma: The projection from full
tetrahedra to the type of (k-)horns is an equivalence.

(Side remark: This is a strong “Kan filling” property and
gives a “simplicial” version of Lumsdaine’s / van den
Berg-Garner’s “globular” result that types are weak

ω-groupoids.)



Nat. trans. between T̂A and ÊB (extended index cat. ∆̂op+ )

f ∶ A → B f1 ∶ B

c ∶ wconstf
c1 ∶ Πa∶A f (a) = f1 c2 ∶ f (a0) = f1

d ∶ cohf ,c

d1 ∶ Πa1a2∶A c(a1, a2) ⋅ c1(a2) = c1(a1)

d2 ∶ Πa∶A c(a0, a) ⋅ c1(a) = c2
d3 ∶ c(a0, a0) ⋅ c1(a0) = c2

Kan-filling lemma ⇒ . . . extensive calculation . . .⇒ Any two
Σ-components connected by a “diagonal arrow” form a
contractible pair!
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Rest as in the special case:

● Assuming a0 ∶ A, we have shown that the can. map

B → nat. trans. from TA to EB

is an equivalence.

● This map is independent of a0.

● Thus, ∥A∥ implies that this map is an equivalence.

● Therefore:
Theorem

(∥A∥ → B) ≃ nat. trans. from TA to EB

in any theory with 1,Σ,Π, Id, fun.ext., ∥−∥,
Reedy ωop-limits.

If you don’t like Reedy ω-limits, you still get all the cases
where B is n-truncated.



Higher Truncations
What is ∥A∥n → B ?

Conjecture: Natural Transformations from the
[n + 1]-coskeleton of EA to EB.

This talk: Case n ≡ −1.

Paolo Capriotti, N.K., Andrea Vezzosi: Proof for the case
that B is (n + 1)-truncated (to appear at CSL’15).

Caveat, wild speculation following.

Case n ≡ 0 can be used to solve the open problem
“univalent type theory eats itself”

with n univalent universes, but without HITs; trick:
interpret Ui as universe of i-types.


