The geometry of constancy

(in HoTT and in cubicaltt)
Martín Hötzel Escardó
(Joint with Thierry Coquand)

University of Birmingham, UK

HoTT/UF at RDP in Warsaw, 2015

Exiting propositional truncations

Often we have $\|X\| \rightarrow X$, even when we don't know whether X is empty or inhabited.
E.g. For any $f: \mathbb{N} \rightarrow \mathbb{N}$, we have $\left\|\sum_{n: \mathbb{N}} f n=0\right\| \rightarrow \sum_{n: \mathbb{N}} f n=0$.

If there is a root of f, then we can find one.

Exiting propositional truncations

However, global choice

$$
\prod_{X: U}\|X\| \rightarrow X
$$

implies that all types have decidable equality.
(And even $X+\neg X$ for all $X: U$ if we have quotients.)

By Hedberg's theorem, if every type has decidable equality then every type is a set and hence global choice negates univalence.

So global choice is both a constructive and a homotopy type theory taboo.

Exiting propositional truncations

Theorem (with Nicolai, Thierry and Thorsten):

A type X has a choice function $\|X\| \rightarrow X$ iff it has a constant endomap $X \rightarrow X$.

Question:
Can we eliminate $\|X\| \rightarrow A$ using a constant map $X \rightarrow A$?

Two answers: Yes (Nicolai Kraus) and no (Mike Shulman).
Nicolai considers coherently constant functions.
Mike considers arbitrary constant functions.

Constancy

There are many notions of constancy.
We investigate the following:

1. A function $f: X \rightarrow A$ is constant if any two of its values are equal.

$$
\operatorname{constant} f \stackrel{\text { def }}{=} \prod_{x, y: X} f x=f y
$$

2. This is data rather than property, unless A is a set.

Called a modulus of constancy of f.
A function can have zero, one or more moduli of constancy.
3. E.g. the function $f: 1 \rightarrow S^{1}$ with definitional value base has \mathbb{Z}-many moduli of constancy κ_{n} : constant f :

$$
\kappa_{n}(x)(y) \stackrel{\text { def }}{=} \text { loop }^{n} .
$$

Set-valued constant functions

1. For any proposition P, by definition of truncation:

2. Can replace P by a set A :

Propositional truncation as a set quotient

1. I.e. $\|X\|$ is the set-quotient of X by the chaotic relation:

2. Can we replace A by an arbitrary type?

No, not in general (Shulman, http://homotopytypetheory.org/2015/06/ 11/not-every-weakly-constant-function-is-conditionally-constant/)

When do we get a factorization of a constant function?

The factorization is possible if any of the following conditions holds:

1. X is empty.
2. X has a given point.
3. We have a function $\|X\| \rightarrow X$.
4. We have a function $A \rightarrow X$.
5. A is a set.

What other sufficient conditions?
And what about necessary conditions?
Also, given any factorization, we can construct another one for which the triangle commutes judgementally.

How to construct a counter example

Natural attempt to get a counter-example

Let $s: S^{1}$ be an arbitrary point of the circle.
Let A be an arbitrary type.
Let $f: s=$ base $\rightarrow A$ be constant.
We can't know a point of the path space $s=$ base in general.
But we know it is inhabited, that is, $\| s=$ base $\|$
Hence $\| s=$ base $\|=1$ by propositional univalence/extensionality.

Attempt to get a counter-example

Can we expect to be able to get a point of an arbitrary type A, from any given constant function $f: s=$ base $\rightarrow A$, even though we can't expect to get a point of $s=$ base in general?

To our surprise, we can.
The attempt fails.

Theorem/Construction

For any $s: S^{1}$ and any constant function $f: s=$ base $\rightarrow A$ into an arbitrary type, we can find $a: A$ such that $f p=a$ for all $p: s=$ base.

$$
\prod_{s: S^{1}} \prod_{A: U} \prod_{f: s=\text { base } \rightarrow A} \text { constant } f \rightarrow \sum_{a: A} \prod_{p: s=\text { base }} f p=a .
$$

Proof outline

1. First show that for any given family of constant functions

$$
f: \prod_{s: S^{1}} s=\text { base } \rightarrow A(s),
$$

each of them factors through 1 . We get $\bar{f}: \prod_{s: S^{1}} A(s)$
This allows us to use induction on the circle and on paths.
2. For any type X, consider the universal constant map on X, $\beta_{X}: X \rightarrow S(X)$, constructed as a HIT.
3. By (1) applied to the family $\beta_{s}: s=$ base $\rightarrow S(s=$ base) given by (2), we get a function $\bar{\beta}: \prod_{s: S^{1}} S(s=$ base $)$.
4. Now, given a single constant function $f: s=$ base $\rightarrow A$, it factors through the universal constant map $\beta_{s}: s=$ base $\rightarrow S(s=$ base $)$ as $f^{\prime}: S(s=$ base) $\rightarrow A$ by (2), and hence we get the required point of A as using (3), as $f^{\prime}(\bar{\beta}(s))$.

Step 1

For any $f: \prod_{s: S^{1}} s=$ base $\rightarrow A(s)$, with f base constant, there is $\bar{f}: \prod_{s: S^{1}} A(s)$ such that $f s p=\bar{f} s$ for all $p: s=$ base.

1. Lemma Any transport of a value of f is a value of f :

$$
\prod_{b, b^{\prime}: S^{1}} \prod_{r: b=b} \prod_{l: b=b^{\prime}} \sum_{q: b^{\prime}=b} \operatorname{transport} l(f b r)=f b^{\prime} q
$$

This doesn't depend on the fact that S^{1} is the circle or on the constancy of f base, and has a direct proof by based path induction.
2. We are interested in this particular case:

$$
\sum_{q: \text { base }=\text { base }} \operatorname{transport} \operatorname{loop}(f \text { base }(\text { refl base }))=f \text { base } q .
$$

3. Then the constancy of f base gives

$$
\operatorname{transport} \operatorname{loop}(f \text { base (refl base }))=f \text { base (refl base }),
$$

which makes S^{1}-induction work.

Step 2

For any type X, consider the universal constant map on X,

$$
\beta: X \rightarrow S(X)
$$

defined as a HIT with higher constructor

$$
\ell: \prod_{x, y: X} \beta x=\beta y
$$

When X is the terminal type 1 , we get the circle S^{1}.

Universal property of the constancy HIT

$$
\begin{aligned}
\beta & : X \rightarrow S(X) \\
\ell & : \quad \prod_{x, y: X} \beta x=\beta y
\end{aligned}
$$

There is an equivalence

$$
\begin{aligned}
S X \rightarrow A & \cong \sum_{f: X \rightarrow A} \text { constant } f \\
g & \mapsto \quad(g \circ \beta, \lambda x y \cdot \operatorname{ap} g(\ell x y))
\end{aligned}
$$

This generalizes the universal property of the circle

$$
\begin{aligned}
S^{1} \rightarrow A & \cong \sum_{a: A} a=a \\
& \cong \sum_{f: 1 \rightarrow A} \text { constant } f
\end{aligned}
$$

Side remark

(Not used in the proof, at least not explicitly.)

1. The universal constant map $\beta_{X}: X \rightarrow S(X)$ is a surjection.
2. The type $S(X)$ is conditionally connected, meaning that

$$
\prod_{s, t: S(X)}\|s=t\| .
$$

("Conditionally" because it is empty if (and only if) X is empty.)

cubicaltt proof

Demonstrate and discuss some fragments of the geometryOfConstancy.ctt file (on my papers web page).

The constant factorization problem

Because the universal map $X \rightarrow\|X\|$ into a proposition is constant (in a unique way), the universal property of $S(X)$ gives a function

$$
\prod_{X: U} S(X) \rightarrow\|X\|
$$

The existence of a function in the other direction,

$$
\prod_{X: U}\|X\| \rightarrow S(X)
$$

is equivalent to the statement that all constant functions $f: X \rightarrow A$ factor through $X \rightarrow\|X\|$.

But we know that this is not the case, by Shulman's construction.
However, this does hold for $X=(s=$ base $)$ and all A.

Step 3

By (1) applied to the family $\beta_{s}: s=$ base $\rightarrow S(s=$ base) of constant functions given by (2), we get a function

$$
\bar{\beta}: \prod_{s: S^{1}} S(s=\text { base })
$$

This is perhaps surprising, because we don't have, of course,

$$
\prod_{s: S^{1}} s=\text { base }
$$

as that would mean that that the circle is contractible.

How come we are able to pick a point of the generalized circle $S(s=$ base $)$, without being able to pick a point of the path space $s=$ base, naturally in $s: S^{1}$?

Step 4

Now, given a single constant function $f: s=$ base $\rightarrow A$, it factors through the universal constant map $\beta_{s}: s=$ base $\rightarrow S(s=$ base $)$ as $f^{\prime}: S(s=$ base $) \rightarrow A$ by (2), and hence we get the required point of A using (3), as

$$
a \stackrel{\text { def }}{=} f^{\prime}(\bar{\beta}(s))
$$

Theorem

Conjecture

In a type theory with $\|-\|$ and (hence) function extensionality.

All constant functions $f: X \rightarrow A$ of any two types factor through $X \rightarrow\|X\|$ if and only if all types are sets (zero-truncated).

And hence univalence fails if all constant functions factor through the truncations of their domains.
(Shulman's construction exhibits a family of constant functions such that if all of them factor through the truncation of their domain, then univalence fails.)

