The geometry of constancy (in HoTT and in cubicaltt)

> Martín Hötzel Escardó (Joint with Thierry Coquand)

> > University of Birmingham, UK

HoTT/UF at RDP in Warsaw, 2015

Exiting propositional truncations

Often we have $||X|| \to X$, even when we don't know whether X is empty or inhabited.

(日) (日) (日) (日) (日) (日) (日) (日)

E.g. For any $f: \mathbb{N} \to \mathbb{N}$, we have $\|\sum_{n:\mathbb{N}} fn = 0\| \to \sum_{n:\mathbb{N}} fn = 0$.

If there is a root of f, then we can find one.

Exiting propositional truncations

However, global choice

$$\prod_{X:U} \|X\| \to X$$

implies that all types have decidable equality.

(And even $X + \neg X$ for all X : U if we have quotients.)

By Hedberg's theorem, if every type has decidable equality then every type is a set and hence global choice negates univalence.

So global choice is both a constructive and a homotopy type theory taboo.

Exiting propositional truncations

Theorem (with Nicolai, Thierry and Thorsten):

A type X has a choice function $||X|| \to X$ iff it has a constant endomap $X \to X$.

Question:

Can we eliminate $||X|| \to A$ using a constant map $X \to A$?

Two answers: Yes (Nicolai Kraus) and no (Mike Shulman). Nicolai considers coherently constant functions. Mike considers arbitrary constant functions.

Constancy

There are many notions of constancy. We investigate the following:

1. A function $f: X \to A$ is constant if any two of its values are equal.

constant
$$f \stackrel{\text{def}}{=} \prod_{x,y:X} fx = fy.$$

This is data rather than property, unless A is a set.
Called a modulus of constancy of f.

A function can have zero, one or more moduli of constancy.

3. E.g. the function $f: 1 \to S^1$ with definitional value base has Z-many moduli of constancy $\kappa_n : \text{constant } f$:

$$\kappa_n(x)(y) \stackrel{\text{def}}{=} \operatorname{loop}^n.$$

Set-valued constant functions

1. For any proposition P, by definition of truncation:

Propositional truncation as a set quotient

1. I.e. ||X|| is the set-quotient of X by the chaotic relation:

2. Can we replace A by an arbitrary type?

No, not in general (Shulman, http://homotopytypetheory.org/2015/06/ 11/not-every-weakly-constant-function-is-conditionally-constant/) When do we get a factorization of a constant function?

The factorization is possible if any of the following conditions holds:

- 1. X is empty.
- 2. X has a given point.
- 3. We have a function $||X|| \to X$.
- 4. We have a function $A \to X$.
- 5. A is a set.

What other sufficient conditions?

And what about necessary conditions?

Also, given any factorization, we can construct another one for which the triangle commutes judgementally.

How to construct a counter example

Natural attempt to get a counter-example

Let $s: S^1$ be an arbitrary point of the circle.

Let A be an arbitrary type.

Let $f: s = base \rightarrow A$ be constant.

We can't know a point of the path space s = base in general. But we know it is inhabited, that is, ||s = base||Hence ||s = base|| = 1 by propositional univalence/extensionality.

Attempt to get a counter-example

Can we expect to be able to get a point of an arbitrary type A, from any given constant function $f: s = base \rightarrow A$, even though we can't expect to get a point of s = base in general?

To our surprise, we can.

The attempt fails.

Theorem/Construction

For any $s: S^1$ and any constant function $f: s = base \rightarrow A$ into an arbitrary type, we can find a: A such that fp = a for all p: s = base.

$$\prod_{s:S^1} \quad \prod_{A:U} \quad \prod_{f:s=\text{base}\to A} \text{constant} \ f\to \sum_{a:A} \quad \prod_{p:s=\text{base}} fp=a.$$

イロト 不得 トイヨト イヨト

э.

Proof outline

1. First show that for any given family of constant functions

$$f:\prod_{s:S^1}s= ext{base} o A(s),$$

each of them factors through 1. We get $\overline{f} : \prod_{s:S^1} A(s)$

This allows us to use induction on the circle and on paths.

- 2. For any type X, consider the universal constant map on X, $\beta_X : X \to S(X)$, constructed as a HIT.
- By (1) applied to the family β_s : s = base → S(s = base) given by (2), we get a function β
 : Π_{s:S¹} S(s = base).
- 4. Now, given a single constant function $f: s = base \rightarrow A$, it factors through the universal constant map $\beta_s: s = base \rightarrow S(s = base)$ as $f': S(s = base) \rightarrow A$ by (2), and hence we get the required point of A as using (3), as $f'(\bar{\beta}(s))$.

Step 1

For any $f:\prod_{s:S^1} s = base \to A(s)$, with f base constant, there is $\bar{f}:\prod_{s:S^1} A(s)$ such that $f s p = \bar{f} s$ for all p: s = base.

1. Lemma Any transport of a value of f is a value of f:

 $\prod_{b,b':S^1} \quad \prod_{r:b=b} \quad \prod_{l:b=b'} \quad \sum_{q:b'=b} \operatorname{transport} l\left(f\,b\,r\right) = f\,b'\,q.$

This doesn't depend on the fact that S^1 is the circle or on the constancy of f base, and has a direct proof by based path induction.

2. We are interested in this particular case:

 $\sum_{q:\text{base}=\text{base}} \text{transport} \log \left(f \text{ base} \left(\text{refl base} \right) \right) = f \text{ base } q.$

3. Then the constancy of f base gives

transport loop (f base (refl base)) = f base (refl base),

which makes S^1 -induction work.

Step 2

For any type X, consider the universal constant map on X,

 $\beta: X \to S(X),$

defined as a HIT with higher constructor

$$\ell:\prod_{x,y:X}\beta x=\beta y.$$

When X is the terminal type 1, we get the circle S^1 .

Universal property of the constancy HIT

$$\beta : X \to S(X),$$

$$\ell : \prod_{x,y:X} \beta x = \beta y.$$

There is an equivalence

$$SX \to A \cong \sum_{f:X \to A} \text{constant } f$$
$$g \mapsto (g \circ \beta, \lambda xy. \operatorname{ap} g(\ell xy)).$$

This generalizes the universal property of the circle

$$S^1 \to A \cong \sum_{a:A} a = a$$

 $\cong \sum_{f:1\to A} \text{constant } f.$

Side remark

(Not used in the proof, at least not explicitly.)

1. The universal constant map $\beta_X : X \to S(X)$ is a surjection.

2. The type S(X) is conditionally connected, meaning that

 $\prod_{s,t:S(X)} \|s=t\|.$

(日) (日) (日) (日) (日) (日) (日) (日)

("Conditionally" because it is empty if (and only if) X is empty.)

cubicaltt proof

Demonstrate and discuss some fragments of the geometryOfConstancy.ctt file (on my papers web page).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The constant factorization problem

Because the universal map $X \to ||X||$ into a proposition is constant (in a unique way), the universal property of S(X) gives a function

 $\prod_{X:U} S(X) \to \|X\|.$

The existence of a function in the other direction,

 $\prod_{X:U} \|X\| \to S(X),$

is equivalent to the statement that all constant functions $f:X\to A$ factor through $X\to \|X\|.$

But we know that this is not the case, by Shulman's construction.

However, this does hold for X = (s = base) and all A.

Step 3

By (1) applied to the family $\beta_s : s = base \rightarrow S(s = base)$ of constant functions given by (2), we get a function

$$\bar{\beta} : \prod_{s:S^1} S(s = \text{base}).$$

This is perhaps surprising, because we don't have, of course,

$$\prod_{s:S^1} s = \text{base},$$

- ロ ト - 4 回 ト - 4 □ - 4

as that would mean that that the circle is contractible.

How come we are able to pick a point of the generalized circle S(s = base), without being able to pick a point of the path space s = base, naturally in $s : S^1$?

Step 4

Now, given a single constant function $f: s = base \rightarrow A$, it factors through the universal constant map $\beta_s: s = base \rightarrow S(s = base)$ as $f': S(s = base) \rightarrow A$ by (2), and hence we get the required point of A using (3), as

 $a \stackrel{\text{def}}{=} f'(\bar{\beta}(s)).$

Conjecture

In a type theory with $\|-\|$ and (hence) function extensionality.

All constant functions $f : X \to A$ of any two types factor through $X \to ||X||$ if and only if all types are sets (zero-truncated).

And hence univalence fails if all constant functions factor through the truncations of their domains.

(Shulman's construction exhibits a family of constant functions such that if all of them factor through the truncation of their domain, then univalence fails.)