
An inductive dependently-typed construction of simplicial sets and of
similar presheaves over a Reedy category

Hugo Herbelin

29 June 2015

HoTT-UF 2015

Warsaw

1



Background: presheaf vs inductive definition of semi-simplicial sets

The presheaf definition:
X0 (points)
X1 (line segments)
X2 (triangles)
...
Xn (n-simplices)
...

equipped with faces dni : Xn → Xn−1 satisfying
dni ◦ dn+1

j = dnj ◦ dn+1
i+1 for n ≥ i ≥ j ≥ 0

Faces can be hard-wired by considering instead the family
Y0

Σa, b : Y0. Y1(a, b)

Σa, b, c : Y0. Σx : Y1(a, b).Σy : Y1(a, c).Σz : Y1(b, c). Y2(a, b, c, x, y, z)
...

where we have set:
Y0 , X0

Y1(a, b) , {x : X1|d1
1(x) = a, d1

0(x) = b} for a, b : Y0

Y2(a, b, c, x, y, z), {t : X2|d2
2(t) = x, d2

1(t) = y, d2
0(t) = z} for a, b, c : Y0, x : Y1(a, b)

y : Y1(a, c), z : Y1(b, c)
...

and where faces are now just projections.

Awodey-Lumsdaine’s inductive definition with hard-wired faces: take the Yi as the primitive data.
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A formal account of Awodey-Lumsdaine’s definition of semi-simplicial sets

initial segment of the types of the (Yi)i<n
Un : Type2

U0 , Unit
Un+1 , ΣX : Un.(F

n,n(X)→ Type1)

signature of all faces at dimension < n of Yp (using “long-jump” – covariant – faces)
F n,p (X : Un) : Type1

F 0,p unit , Unit
F n+1,p (X, Y ) , Σx : F n,p(X).Πd : [p]→ [n]. Y (dn,p,n(x))

extracting the initial segment of faces of dimension < n of the face d : [p]→ [q] of a p-semi-simplex
from the initial segment of faces of dimension < n of the p-semi-simplex itself
dn,p,q (X : Un) (x : F n,p(X)) : F n,q(X)

d0,p,q unit unit , unit
dn+1,p,q (X, Y ) (x, y) , (dn,p,q(x), λd′ : [q]→ [n]. rewY α

n,p,q,n
d,d′ (x) in y(d′ ◦ d))

composition of face extraction
αn,p,q,rd,d′ (X : Un) (x : F n,p(X)) : (d′ ◦ d)(x) = (d′ ◦ d)(x)

α0,p,q,r
d,d′ unit unit , refl

αn+1,p,q,r
d,d′ (X, Y ) (x, y) , (αn,p,q,rd,d′ (x), αn,p,q,rd,d′ (x)(y))
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A formal account of Awodey-Lumsdaine’s definition of semi-simplicial sets (continued)

It then remains to take the coinductive limit SSTn : Un → Type2 of the definition:

S : SSTn(X)

thisS : F n,n(X)→ Type1

S : SSTn(X)

firstS : SSTn+1(X, thisS)

SST , SST0(unit)

i.e. SST is the type of all infinite tuples (Y0, Y1, Y2, ...) representing a semi-simplicial set.

Then, for S : SST, the total spaces are easily defined by:

Tn(S) , (let (X, Y ) , firstn(S) in Σx : F n,n(X).Y (x))

while the interpretation of non-trivial face d : [p]→ [q] is

d (u : Tp(S)) : Tq(S)

d (x, z) , (let (x′, y′) , fst q−p+1(x) in y′ d)

Faces commute thanks to α.
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Digression: the status of equality in the definition

Setting
d
n,p,q

(x)(y) , λd′ : [q]→ [n]. rewY α
n,p,q,n
d,d′ (x) in y(d′ ◦ d) ,

the proof αn,p,q,rd,d′ (x)(y) proves

rewλx.Πd′′:[r]→[n].Y (d′′(x)) α
n,p,q,r
d,d′ (x) in (d′ ◦ d)(x)(y) = ((d′(d(x))) ◦ (d(x)))(y)

with both members in type Πd′′ : [r]→ [n]. Y (d′′n,r,n(d′n,q,r(dn,p,q(x)))).

The equality can be obtained by associativity of composition in the category of injective functions, func-
tional extensionality of equality, composition of equality proofs, and, an extra coherence diagram over
equality proofs.

In a type theory with strict equality, the latter coherence diagram is an instance of axiom K.

Without strict equality, the extra coherence diagram can be proved by proving a higher coherence diagram
about α at smaller dimensions, and recursively, so statements about deeper and deeper equality.

In HoTT, this can be cut at level n by working on types of homotopy level n.

On the contrary of the presheaf definitions, equalities are here proved, not assumed, and it is possible to
prove (at least as a meta-argument) that the proofs α are made from deductive and inductive reasoning
over reflexivity proofs. Hence they are strict.
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Extension to simplicial sets

The basic idea is to characterize simplicial sets from their subsets of pure simplices and to inject degen-
eracies algebraically, i.e. to replace the signature of all faces at dimension < n of Yp

F n,p (X : Un) : Type1

F 0,p unit , Unit
F n+1,p (X, Y ) , Σx : F n,p(X).Πd : [p]→ [n]. Y (dn,p,n(x))

by
F n,p (X : Un) : Type1

F 0,p unit , Unit
F n+1,p (X, Y ) , Σx : F n,p(X).Πd : [p]→ [n]. [Y (dn,p,n(x)) ∨ Sn(X)(dn,p,n(x))]

with Sn(X)(x) algebraically characterizing the degenerate n-simplices whose faces are x.
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Extension to simplicial sets (continued)

A degenerate n-simplex can canonically be expressed as a pure p-simplex of dimension p < n along some
formal (non-trivial) degeneracy map s : [p]→ [n].

For a degenerate n-simplex to have faces x, those faces have to satisfy the degeneracy/face laws induced
from s. So, we can informally set:

Sn(X)(x) : Type1

Sn(X)(x) , Σ


p < n

s : [p]→ [n]

(X ′, Y ′) , fst n−p(X)

x′ : F p,p(X ′)

z′ : Y ′(x′)

 .Π
[
p′ < n

d : [n]→ [p′]

]
. ŝ′

r,p′
(d̃′

p,r
(x′, z′)) = d̂n,p

′
(fst n−p

′
(x))

where d′ : [p]→ [r] are s′ : [r]→ [p′] are canonical such that d ◦ s = s′ ◦ d′ and d̂, ŝ, d̃ are appropriate
semantic interpretations of d and s

However, we would need well-founded induction and we did not succeed to combine well-founded with the
dependent structure of the construction.
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Extension to simplicial sets (continued)

We instead define Sn(X)(x) by induction on n:

Dn,p (X : Un) : Type1

D0,p unit : Empty

Dn+1,p (X, Y ) : Dn,p(X) ∨
∨s : [n]→ [p]

x : F p,p(X)

z : Y (x)

.
Sn X x , Σs : Dn,n(X). Π

[
p′ < n

d : [n]→ [p′]

]
. connect-topn,n(X)(x)(s)(d)

with connect-topn,p defined by induction on n and expressing that the appropriate constraint on the
face d of the degeneracy s holds.
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Excerpt of the definition of connect-top

See paper.
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The coinductive limit

As for semi-simplicial sets, we can define the coinductive limit STn : Un → Type2 of the definition:

S : STn(X)

thisS : F n,n(X)→ Type1

S : STn(X)

firstS : STn+1(X, thisS)

ST , ST0(unit)

i.e. ST is the type of all infinite tuples (Y0, Y1, Y2, ...) characterizing a simplicial set from the family of its
pure simplices dependent over their faces.

For S : ST, the total spaces are now defined including the degeneracies:

Tn(S) , (let (X, Y ) , firstn(S) in Σx : F n,n(X).[Y (x) ∨ Sn(X)(x)])

Faces are defined as for semi-simplicial sets but defining degeneracies require much more work, and in
particular to show coherence diagrams (not all details are proven yet).
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Miscellaneous comments

The inductive definition is only classically equivalent to the presheaf definition (classical logic is needed
to decide whether a simplex is degenerate or not).

Morphisms can be defined by induction, following the structure of the definition (not done in details).

Similarly for products of simplicial sets (using a characterization of when pairs of simplices are degenerate,
but not done in details).

The question of exponentials is open (the characterization of when a simplex in the exponential is degen-
erate is intricate; afaicj proving that the exponential is an exponential would require classical reasoning to
decide degeneracy while curryfying).

This directly scales to a construction of Reedy presheaves (and in particular to cubical sets).
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