Models of type theory in univalent mathematics

B. Ahrens, about jww P. LeF. Lumsdaine, V. Voevodsky

Institut de Recherche en Informatique de Toulouse
Université Paul Sabatier
2015-06-30

Outline

(1) UniMath: a library of univalent mathematics
(2) Formalizing models of type theory in UniMath

Outline

(1) UniMath: a library of univalent mathematics
(2) Formalizing models of type theory in UniMath

What is UniMath?

- one of several libraries of univalent mathematics
- using the Coq proof assistant (following branch V8.5 atm)
- combines several libraries:
- Foundations by Voevodsky
- RezkCompletion by Ahrens, Kapulkin, Shulman
- Ktheory by Grayson
- (PAdics by Pelayo, Voevodsky, Warren)
- Base for several more libraries:
- Work on substitution systems by Ahrens, Matthes
- Formalization of cubical model by Mörtberg
- Models of type theory by Ahrens, Lumsdaine, Voevodsky (see later)

What is UniMath?

- Since V8.5beta2: use of vanilla Coq, no patches necessary
- Crucial flags -indices-matter, -type-in-type
- General philosophy of UniMath: stay within MLTT fragment of CIC, for kernel:
- no use of records
- no use of type classes
- no use of general inductive declarations given via Inductive scheme
- Univalence taken as axiom; no HITs
https://github.com/UniMath/UniMath

Constituent pieces I: Foundations

- Written by Voevodsky, 2009 - today
- approx. 6500loc (but very long ones), 820k chars

Contents

- basic (and less basic) HoTT stuff
- set quotients
- algebraic hierarchy: from monoids to fields
- naturals, integers, rationals

Constituent pieces II: RezkCompletion

- Written by Ahrens, Kapulkin, Shulman, 2012 - today
- approx. 6000loc, 240k chars

Contents

- (pre)categories, functors, natural transformations, adjunctions, equivalences
- Rezk completion: from precategories to categories
- some limits

Constituent pieces III: Ktheory

- Written by Grayson, 2013 - 2014
- approx. 5000loc, 260k chars

Contents

- groups by generators and relations, free groups
- abelian groups, group actions, torsors
- definition of $B(G)$ and its covering space $E(G)$, proof (using univalence) that the loop space of $B(G)$ is G
- construction of the circle as $B(\mathbb{Z})$

Constituent pieces IV: PAdics

- Written by Pelayo, Voevodsky, Warren, 2011 - 2012
- approx. 3000loc, 230k chars

Contents

- stuff about p-adic numbers?
- code not maintained, does not compile with current Foundations

POST-TALK EDIT: Warren is currently updating PAdics to the latest version of UniMath. For status info see https://github.com/UniMath/UniMath.

Outline

(1) UniMath: a library of univalent mathematics
(2) Formalizing models of type theory in UniMath

What is a type theory?

What is a type theory?
See Vladimir's talk.

What is a model of type theory?

- "Model": algebraic structure intended for interpreting syntax
- Various notions of "model" considered in this talk model a skeletal type theory without type/term constructors.
- For now, model just type dependency and substitution.

Data modeled in such a model

- contexts and their morphisms
- types and terms in context
- substitution with respect to context morphisms

Notions of "model of type theory"

The zoo of "models of type theory"

- categories with families
- categories with attributes
- contextual categories
- comprehension categories
- type categories
- categories with display maps
- ...

Notions of "model of type theory"

- In general, a model is a category with extra structure.
- The alternatives differ in how the various data are represented, algebraically or categorically
algebraically given by operations satisfying equations categorically given as objects satisfying universal property

Notions of "model of type theory"

How do they relate to each other?

In classical set-theoretic foundations

For overview see http://ncatlab.org/nlab/show/ categorical+model+of+dependent+types

In univalent foundations
Additional parameters:

- strong vs. weak existence
- two notions of "category" (details later) entail further bifurcations of those notions

Goals

Goal of this project

- Vary some of these parameters and compare the resulting notions
- Formalize in UniMath

More specifically, comparing means:
(1) construct functions between the various types of models
(2) prove properties of maps: injectivity, equivalence, ...

Functions vs. functors

- in set theory functors are the only meaningful way to compare these notions (constructing adjunctions or similar): equality is too strict, injectivity of functions would not be meaningful
- univalent identity in type theory makes injectivity meaningful as a property of functions between the types of models

Interlude: (pre)categories in univalent mathematics

A preprecategory is

- a type $O: \mathcal{U}$ of objects
- a dependent type $A: O \times O \rightarrow \mathcal{U}$ of arrows
- id $: \prod_{(a: O)} A(a, a)$
- (०) $: \prod_{(a, b, c: O)} A(a, b) \times A(b, c) \rightarrow A(a, c)$
- axioms postulating equalities of arrows

Interlude: (pre)categories in univalent mathematics

A precategory is

- a type $O: \mathcal{U}$ of objects
- a dependent type $A: O \times O \rightarrow$ Set of arrows
- id $: \prod_{(a: O)} A(a, a)$
- (○) $: \prod_{(a, b, c: O)} A(a, b) \times A(b, c) \rightarrow A(a, c)$
- axioms postulating equalities of arrows

Interlude: (pre)categories in univalent mathematics

A category is

- a type $O: \mathcal{U}$ of objects
- a dependent type $A: O \times O \rightarrow$ Set of arrows
- id $: \prod_{(a: O)} A(a, a)$
- (○) $: \prod_{(a, b, c: O)} A(a, b) \times A(b, c) \rightarrow A(a, c)$
- axioms postulating equalities of arrows
such that

$$
\text { idtoiso : } \prod_{a, b: O}(a=b) \rightarrow \text { iso }(a, b)
$$

is an equivalence.

Examples of categories

Precategories that are categories:

- hSets
- Groups, rings, ... (Structure Identity Principle)
- Functor category $[C, D]$, if D is a category

Non-example:

(indiscrete precategory on two objects)

Rezk completion: from precategories to categories

- Every category is a precategory
- Conversely, turn a precategory C into a category via "Rezk completion", a (homotopy) quotient of C

Intuition behind the Rezk completion

add as many identities between objects a and b as there are isomorphisms

Rezk completion and models of type theory

Reminder: notion of model is given by (pre)category with structure.

Interplay between Rezk completion and structure of model

(1) Does a given structure on a precategory C induce a structure on its Rezk completion?
(2) Does the map structure $e_{1} \rightarrow$ structure $_{2}$ depend on the underlying precategory being a category?

Uniqueness of limits in categories

Lemma

In a category, limiting cones are unique up to propositional equality.

Put differently,

in a category, "specified pullbacks" is a property.

Notions of models considered

- Categories with Families
- Comprehension Categories, plus the "split" version
- Categories with Display Maps

A short overview...

Categories with Families

A precategory with families is a precategory \mathcal{C} with

- for any $\Gamma: \mathcal{C}_{0}$, a set $\mathcal{C}(\Gamma)$;
- for any $\Gamma: \mathcal{C}_{0}$ and $A: \mathcal{C}(\Gamma)$, a set $\mathcal{C}(\Gamma \vdash A)$;
- for any $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$, a reindexing function $\mathcal{C}(\Gamma) \rightarrow \mathcal{C}\left(\Gamma^{\prime}\right), \quad A \mapsto A[\gamma] ;$
- for any $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$ and $A: \mathcal{C}(\Gamma)$, a function $\mathcal{C}(\Gamma \vdash A) \rightarrow \mathcal{C}(\Gamma \vdash A[\gamma]), \quad a \mapsto a[\gamma] ;$
- for any $\Gamma: \mathcal{C}_{0}$ and $A: \mathcal{C}(\Gamma)$, an object $\Gamma . A$ and a projection morphism $\pi_{A}: \mathcal{C}(\Gamma . A, \Gamma) ;$
- for any $\Gamma: \mathcal{C}_{0}$ and $A: \mathcal{C}(\Gamma)$, a generic element $\nu: \mathcal{C}\left(\Gamma . A \vdash A\left[\pi_{A}\right]\right) ;$
- pairing, corresponding to extension of context morphisms;
- laws ...

Comprehension Categories

A comprehension precategory is a precategory \mathcal{C} with

- for any object $\Gamma: \mathcal{C}_{0}$, a type $\mathcal{C}(\Gamma)$,
- for any $A: \mathcal{C}(\Gamma)$, an object $\Gamma . A: \mathcal{C}_{0}$,
- projection morphisms $\pi_{(\Gamma, A)}: \mathcal{C}(\Gamma \cdot A, \Gamma)$,
- for any morphism $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$, a reindexing function $\mathcal{C}(\Gamma) \rightarrow \mathcal{C}\left(\Gamma^{\prime}\right), A \mapsto A[\gamma]$,
- for any $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$ and $A: \mathcal{C}(\Gamma)$, a morphism $q_{(\gamma, A)}: \mathcal{C}\left(\Gamma^{\prime} . A[\gamma], \Gamma . A\right)$,
- for any $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$ and $A: \mathcal{C}(\Gamma)$,

- for any $\gamma: \mathcal{C}\left(\Gamma^{\prime}, \Gamma\right)$ and $A: \mathcal{C}(\Gamma)$, the above square is a pullback.

Split comprehension precategories

A comprehension category as above is split if

- $\mathcal{C}(\Gamma)$ is a set for each Γ,
- reindexing (of types) is functorial
- q is functorial

POST-TALK EDIT: what is called "comprehension category" here should really be called "type category" after A. Pitts, Categorical Logic, 2000, Def. 6.3.3. This has since been renamed in our development.

Categories with Display Maps

A precategory with display maps is given by a precategory \mathcal{C} with

- for any $\Delta, \Gamma: \mathcal{C}_{0}$, a subtype $\mathrm{DM}_{\Delta, \Gamma}: \mathcal{C}(\Delta, \Gamma) \rightarrow$ Prop
- DM is closed under isomorphism (in the arrow precategory), and
- display maps have (specified) pullbacks along all maps; and they are again display maps.

Conjectural relation between models

- Maps f, g, h, j, k do not change the underlying (pre)category
- g is injective (forgets splitness)
- $j=h \circ g \circ f$
- Conjecture: f is an equivalence
- Conjecture: left adjoints R to inclusions I exist

Current status of the project

Completed

- Construction of maps between different structures

Not completed

- Proofs of properties of constructed maps
- Compatibility of structures with Rezk completion

Details about the constructed maps

- All the maps constructed between different structures leave the underlying (pre)category unchanged
- Maps CwF \rightarrow CwDM and CompC \rightarrow CwDM use the fact that "specified pullbacks" is a property in categories

Details about the formalization

- 2500loc
- needs -type-in-type

Rewriting by hand:

- rewrite lemma mostly fails
- instead, use etransitivity; isolate subterm; apply lemma
- side effect: produces nice identity terms
- possible to automate (proof-relevant rewriting)?

Details about the formalization

- 2500loc
- needs -type-in-type

Rewriting by hand:

- rewrite lemma mostly fails
- instead, use etransitivity; isolate subterm; apply lemma
- side effect: produces nice identity terms
- possible to automate (proof-relevant rewriting)?

Thanks for your attention.

