
Coq libraries forHoTT/UF

Assia Mahboubi � HOTT/UF workshop 2015

Assia Mahboubi � (Towards) Coq libraries for HoTT/UF 1



Disclaimer

The title and the content do not match.

In this talk:

• No brand new library;

• No new formalized result;

• No comparative survey.

Only some methodological remarks.
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Large Libraries of Formalized
Mathematics

Issues:

• Get the de�nition(s) and notations right

• Get the right corpus of lemmas

• Get the right automation tools

• Maintain a rigorous software engineering discipline

• Write proofs robust to the regular re-factoring
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Mathematical Components

• Authors: the Math. Comp. team (led by G. Gonthier);

• Follow up of a Coq proof of the Four Colour Theorem;

• Culminates with a proof of the Odd Order Theorem.

• 6 years, ∼ 15 authors, ∼ 160 000 l.o.c.

Theorem (Feit-Thompson - 1963)

Every group of odd order is solvable.
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Mathematical Components
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Features

• Constructive proof;

• Wide variety of algebraic theories;

• Large hierarchy of algebraic structures, with many instances;

• Coherent policies maintained across the libraries;

• Methodology: small scale re�ection and type inference;

• Extension of the tactic language (ssre�ect).

http://ssr.msr-inria.inria.fr/
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Small Scale Re�ection

Re�ection: Use conversion and de�nitional equality
to devise automated deduction procedures.

Small scale: Make re�ection local and pervasive
to automate bookkeeping.
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Boolean Re�ection

Compare:

Inductive Zis_gcd (a b g:Z) : Prop :=

Zis_gcd_intro :

(g | a) -> (g | b) ->

(forall x, (x | a) -> (x | b) -> (x | g)) ->

Zis_gcd a b g.

Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.

Inductive prime (p:Z) : Prop :=

prime_intro :

1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.

Or even:

Definition prime k : Prop :=

k > 1 /\ forall r d, 1 < d < k -> k <> r * d.
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Boolean Re�ection

With:
Fixpoint prime_decomp_rec m k a b c e :=

let p := k.*2.+1 in
if a is a'.+1 then
if b - (ifnz e 1 k - c) is b'.+1 then
[rec m, k, a', b', ifnz c c.-1 (ifnz e p.-2 1), e] else

if (b == 0) && (c == 0) then
let b' := k + a' in [rec b'.*2.+3, k, a', b', k.-1, e.+1] else

let bc' := ifnz e (ifnz b (k, 0) (edivn2 0 c)) (b, c) in
p ^? e :: ifnz a' [rec m, k.+1, a'.-1, bc'.1 + a', bc'.2, 0] [:: (m, 1)]

else if (b == 0) && (c == 0) then [:: (p, e.+2)] else p ^? e :: [:: (m, 1)]
where "[ 'rec' m , k , a , b , c , e ]" := (prime_decomp_rec m k a b c e).

Definition prime_decomp n :=

let: (e2, m2) := elogn2 0 n.-1 n.-1 in
if m2 < 2 then 2 ^? e2 :: 3 ^? m2 :: [::] else
let: (a, bc) := edivn m2.-2 3 in
let: (b, c) := edivn (2 - bc) 2 in
2 ^? e2 :: [rec m2.*2.+1, 1, a, b, c, 0].

Definition prime p :=

if prime_decomp p is [:: (_ , 1)] then true else false.
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Boolean Re�ection: Free Theorems

(* Order relation on nat *)

Fixpoint le n m := match n, m with

| 0 , _ => true

| S _ , 0 => false

| S n', S m' => le n' m' end.

Notation "a <= b" := (le a b).

(*Free theorems , thanks computation *)

Lemma le0n n : 0 <= n = true.

Proof. reflexivity. Qed.

Lemma leSS n m : S n <= S m = n <= m.

Proof. reflexivity. Qed.

(* Almost free theorems *)

Lemma lenn n : n <= n = true.

Proof. by elim: n. Qed.
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Boolean Re�ection and Deduction

Free theorems combine well with boolean connectives:

n : nat

m : nat

==================

1 <= S m && (S n <= 0 ==> b) && P = true

simpl.

n : nat

m : nat

==================

P = true
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Boolean vs Prop De�nitions

Whereas using the relation de�ned in the standard library:

Inductive le (n : nat) : nat -> Prop :=

le_n : le n n

| le_S : forall m : nat, le n m -> le n (S m)

• The proof of n <= m chains m - n + 1 constructors;

• Local simpli�cations are (much) less easy.
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The Rewrite Swiss Knife: Examples

Chaining: rewrite foo bar rewrites with foo, then bar.

Repeating, repeating if possible: rewrite !foo, rewrite ?bar

Simpl: rewrite /= but also rewrite foo /= bar

Trivial: rewrite // but also rewrite foo // bar

Unfold: rewrite /blah

Change for convertible: rewrite -[foo]/blah

Exact Patterns: rewrite [X in _ <= X]foo, rewrite [LHS]foo,
rewrite [X in X + _ = _]/=

Context Patterns: rewrite [in X in _ <= X]foo, rewrite [in LHS]foo
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Boolean and Prop De�nitions

• Nested binary Prop conjunctions and unary, boolean,
triple-conjunction:

Lemma and3P : [/\ b1, b2 & b3] <-> [&& b1, b2 & b3] = true.

• Back to the de�nition of primality:

Lemma primeP p :

reflect (p > 1 /\ forall d, d %| p -> d == 1 || d == p) (prime p).
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From Bool to Prop and Back

move/eqP: h => h : transforms hypothesis h : n == m in the context
into h : n = m

apply/eqP : transforms a goal n == m into n = m.

case/orP: h => h : when h : p || q, performs a case analysis: h : p in
one branch, h : q in the other.

case/andP: h => h1 h2 : when h : p && q, introduces both h1 : p and
h2 : q.

rewrite (negPf h):= when h : ~~ p : rewrites occurrences of p to false

in the goal.
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Boolean Re�ection & Classical Logic

Excluded middle is just case analysis:

(* Boolean Excluded Middle, never used as such. *)

Lemma EMb (b : bool) : b || ~~b = true.

Proof. by case b. Qed.
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Boolean Re�ection & Classical Logic

Contraposition is provable:

Lemma contra (c b : bool) :

(c = true -> b = true) -> ~~ b = true -> ~~ c = true.

Lemma contraL (c b : bool) :

(c = true -> ~~ b = true ) -> b = true -> ~~ c = true.
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Boolean Re�ection & Classical Logic

The classical monad is convenient to use:

Definition classically P b := (P -> b = true) -> b = true.

Lemma classic_EM : forall P, classically (decidable P).

Lemma classic_pick (T : Type) (P : T -> Prop) :

classically ({x : T | P x} + (forall x, ~ P x)).
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Numbers in the MathComp Libraries

Instances of numbers with boolean comparisons:

• Natural numbers, integers,

• Rational numbers, modular arithmetic,

• Algebraic real and complex numbers,...

With:

• Elementary arithmetic (binomials, primality, logs,...)

• Group, ring, �eld, ordered structures theories

• ...
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Equality Types

The fundamental structure to the library is (unfolds to):

Structure eqType := Pack {

eq_sort : Type;

eq_op : eq_sort -> eq_sort -> bool;

eq_opP : forall x y : eq_sort, (op x y = true) <-> (x = y)}.

Notation "x == y" := (@eq_op _ x y).
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Equality Types

The main properties shared by instances of eqType are:

• The in�x == notation

• Hedberg's theorem:

Theorem eq_irrelevance (T : eqType) x y :

forall e1 e2 : x = y :> T, e1 = e2.

• Canonical preservation of the eqType structure through pair,
list, option, ...

Instances are the expected ones:
unit, booleans, numbers, �nite types,...
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Inference of an eqType Structure

Structure eqType := Pack {

eq_sort : Type;

eq_op : eq_sort -> eq_sort -> bool;

eq_opP : forall x y : eq_sort, (op x y = true) <-> (x = y)}.

Notation "x == y" := (@eq_op _ x y).

(Demo)
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Inference of an eqType Structure

We input an incomplete term:

@eq_op ?1 [:: 9] [:: 3, 6]

with the expected types:

@eq_op ?1 [:: 9] [:: 3, 6]

eqType eq_sort ?1 eq_sort ?1

And we should therefore solve the uni�cation equation:

list nat = eq_sort ?1
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Inference of an eqType Structure

We want to solve list nat = eq_sort ?1

Theorem list_eqType provides a canonical op on lists:

T : eqType

list (eq_sort T ) ≡ eq_sort (list_eqType T )

We can look for a solution of the shape:

?1 = list_eqType ?2

With the new constraint:

nat = eq_sort ?2
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Inference of an eqType Structure

We want to solve nat = eq_sort ?2

Theorem nat_eqType provides a canonical op on lists:
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Canonical Structures

• A type inference mechanism via uni�cation hints;

• Based on projections of records;

• Implemented in Coq by A. Saïbi (circa 1997);

• Similar to (but subtly di�erent from)
N. Oury and M. Sozeau's Type Classes.

Bibliography:

• Typing algorithm in type theory with inheritance,
A. Saïbi, Proceedings of POPL 1997, ACM Press.

• Canonical Structures for the working Coq user,
A. Mahboubi, E. Tassi, Proceedings of ITP 2013, Springer.
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A Hierarchy of Interfaces
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Populating the Hierarchy: subTypes

The root of the hierarchy comprises interfaces for:

• eqType, �nType, countType, choiceType

Interestingly enough:

• if P is a decidable (boolean) predicate

• if T is an [eq|�n|count|choice]Type

• then so is {x : T | P x = true}
• and its isomorphic copies.
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Populating the Hierarchy: subTypes

(s : subType T P) is isomorphic to {x : T | P x = true}.

Structure subType (T : Type) (P : pred T) : Type := SubType {

sub_sort :> Type;

val : sub_sort -> T;

Sub : forall x, P x -> sub_sort;

_ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u;

_ : forall x Px, val (@Sub x Px) = x

}.

• sub_sort is its carrier type;

• val injects s into T

• Sub is the pseudo constructor of the subType.
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Populating the Hierarchy: subTypes

(s : subType T P) is isomorphic to {x : T | Px = true}.

This infrastructure provides:

• A generic construction for natural subTypes;

• Canonical instances of transferred [eq|�n|count|choice]Type;

• A proof that val : s -> T is injective;

• A generic partial projection T -> option s.
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Populating the Hierarchy

More generally new instances of [eq|�n|count|choice] structures
can be formed canonically for:

• Isomorphic types (via a bijection) or subtypes;

• Quotients by a boolean relation;

• Types isomorphic to an instance of a generic variable-arity
labeled tree type.

(Demo)
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Features

Features:

• A uniform set of formalized content;

• Reusable design patterns

• A careful management of computational behaviors;

• Several representations for a same object;

• Tatics.

But:

• Based on logic in Prop;

• Limited support of the tatics for HoTT;

• Almost no analysis, no category theory.

Assia Mahboubi � (Towards) Coq libraries for HoTT/UF 32



HoTT/UF Libraries are Young

Impressive and elegant experiments but:

• Large parts of other existing libraries cannot be combined;

• Complementary contents, with incompatible styles;

• Mexican hat syndromes;

• Management of computational behavior;

• Lack of dedicated proof commands.
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Some Consolidation Perspectives

• More documentation of the road-map;

• More constructions, and more about their speci�c theory;

• A better tactic language?
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